Automated Trash Collection using
Markov Decision Processes

Robert J. Moss
Stanford University, Computer Science
Stanford, CA, 94305
mossr@cs.stanford.edu

Abstract—Municipal solid waste collection systems normally
collect trash on a prescribed schedule and have the potential to
unnecessarily collect exhaustively. The problem of reducing the
frequency of garbage truck collection visits can be modeled
as a Markov decision process (MDP) and solved efficiently.
We split this problem into two phases: resource allocation
of garbage trucks and optimized route planning given trash
locations. The resource allocation phase is solved using the A*
path finding algorithm to determine if alternative agents are
closer to trash locations. The route planning phase is formulated
as an MDP and solved in a dynamic environment using model-
based and model-free approaches. For problems with relatively
small state-spaces, value iteration (model-based) guarantees that
the optimal policy is found. We compare the results of trash
collection policies for an oracle and a baseline against a learned
value iteration policy. We also analyze the benefit of multi-
agent allocation in a larger city context. Results show that an
optimized collection policy can reduce the usage of garbage
trucks compared to a standard baseline exhaustive collection
plan and therefore limit unnecessary emissions output.

I. INTRODUCTION

Garbage trucks get on average 4.63 miles per gallon [1],
thus are in a position to reduce their frequency of use. Nor-
mally, garbage trucks are deployed daily/weekly/bi-weekly to
collect trash, depending on the town or city [2]. The simple
fixed schedule means the usage of these inefficient trucks
could potentially be reduced. This work attempts to show that
this frequency can be reduced using reinforcement learning
to find an optimal plan for allocating garbage trucks in a
dynamic town and city environment.

The problem of optimizing the paths for garbage trucks to
travel to sites and collect trash can be modeled in various
ways. We split the problem into two phases: resource allo-
cation and planning. For phase one, resource allocation, we
determine if multiple agents would reduce the overall travel
of a single agent to trash locations within a grid city. We use
the A* path finding algorithm [3] to determine the shortest
path to all trash locations from specific origin locations for
up to four agents, and will deploy other agents if they are
closer to the trash locations. For phase two, planning, we
formulated the problem as a Markov decision process (MDP)
and solved it using value iteration, Q-learning, and Sarsa(\)
to create optimal policies on the fly [4]. The policies represent
the plan to follow to optimally collect trash within a city.

Our aim is to show that optimizing the allocation and
planning of garbage truck deployment would help minimize

Code available at https://github.com/mossr/TrashMDP.jl

the frequency of scheduled trash pickups. This minimization
in turn could reduce unnecessary trash collection visits, could
save cost on gas for the garbage trucks, and ultimately reduce
the use of these large vehicles. This would also help to
limit the emissions output from garbage trucks. Empirically,
garbage trucks are loud and disruptive, causing disturbances
in neighborhoods on a weekly basis. These trucks are also
extremely inefficient [1]. Nevertheless, trash collection is a
necessity in society, but the impact of the inefficient trucks
has the potential to be reduced. Garbage trucks produce 2.23
kg of CO; per mile on average [1]. With the preservation of
limited natural resources and reduction of carbon emissions
output in mind, we purpose a reformulation of the trash
collection problem to solve it efficiently.

Similar decision support systems to solve the municipal
trash collection problem have been proposed. Specifically, L.
Santos et al. proposed a multi-vehicle multi-route spatial de-
cision support system for efficient trash collection in Portugal
using a heuristic technique called path-scanning [5], [6]. A
system was proposed to detect residential trash fill-level and
use shortest path planning to find optimal routes for trash
collection [7]. Another system used an integer programming
model for locating garbage accumulation points that could be
used within a decision support tool for municipal waste man-
agement systems [8]. Lastly, a study was done to characterize
the trash collection problem and determine optimal collection
paths that cover all residential blocks [2]. Absent from these
approaches is an automated system that can incorporate the
notion of reward into the decision of route planning in a
dynamic environment—we purpose such a system.

While this work purposes an automated planning system,
it does not assume the garbage vehicles are autonomously
driven. Recent studies have shown that autonomous vehicles
for solid waste collections could reduce costs for municipal
governments [9]. Knowing the potential benefit of autonomy,
the design of the purposed system abstracts the planning to
the vehicle location level, therefore could be applied to either
manned or unmanned vehicles.

The paper is structured as follows: Section II details
the technical approach to solve the problem; describing
the simulation environment in Section II-A, the model in
Section II-B, the investigated algorithms in Section II-C,
the software implementation in Section II-D, and addresses
assumptions in Section II-E. Section III highlights the results
and analysis from this work; defining an oracle and baseline

https://github.com/mossr/TrashMDP.jl

in Section III-A, analyzing different reward models in Section
III-B, analyzing multi-agent allocation in Section III-C, and
discussing the emissions impact of the system in Section
III-D. Finally, Section IV addresses the applicability of such
a system in the real-world and provides concluding remarks.

II. APPROACH
A. Environment

A simulation environment was built to test, validate, and
tune the system. The environment is modeled as a grid with
certain cells marked as roads and other cells marked as trash
site locations. Two versions of the environment were tested: a
10 x 10 “town” with 4 trash locations (seen in Figure 1) and a
19 x 19 “city” with 36 trash locations (seen in Figure 4). The
environment propagates forward every time step and models
the accumulation of trash at the fixed trash locations. These
locations each have a fixed (z,y) coordinate, a trash fill-
level percentage [0 — 100], and a trash fill-rate [1 — 10]. The
fill-rate is fixed per location, while the fill-level is increased
per time step based on the fill-rate. We set the simulation
clock, i.e. time steps, to be a single day. We run a single
environment step, solve the MDP to get an optimal policy
on the fly, and then execute that policy. The full simulation
is run over 364 simulated days or 52 simulated weeks. We
set a collection threshold of 80% to be the fill-level in which
the trash is deemed ready to be collected.

B. Model

Due to the cost/reward nature of this problem, a state-based
approach was a good candidate, more specifically, modeling
the problem as an MDP. Our approach was to formulate the
garbage truck planning problem as an MDP and solve it
efficiently with a variety of algorithms within our simulation
environment. The agents in this problem are garbage trucks
and will be referred to as the agents going forward. Multiple
agents can be deployed during the resource allocation phase.

1) State-Space: The state is given by the (z,y) location
of the agent in the fixed grid world. The state-space is strictly
limited to the roads and the trash locations as shown in Figure
1. Thus, the state-space dimensionality is only 48 states for
the 10 x 10 grid and 316 for the 19 x 19 grid (see Figure 4).

This MDP has no terminal state as the trash can continue
to accumulate at the locations and the agent can continue
to collect the trash. We terminal the simulation after a fixed
maximum time step (set to 364 days, or 52 weeks).

2) Action-Space: Modeling this problem in a grid world
means we are only worried about the actions that the agent
can take in a 2D Cartesian plane. The action-space is the set
of all actions {nothing, up, down, left, right}, where
nothing is a non-action for the agent to remain stationary
and wait for more information to become available through
the propagation of the environment.

3) Reward Function: Multiple reward functions have been
explored and tested in this approach. The two reward func-
tions shown in Figure 2 are piecewise functions R of the
fill-level L. This allows us to model reward as a function of
the trash accumulation. Both reward functions have identical

227.

Fig. 1: Gray cells represent roads, red cells represent the
trash accumulation locations (where the color indicates the
fill-level at that location), and the blue rectangle is the agent.
White dots indicate the current optimal action at that cell
(where the dot is the nothing action).

behavior below the collection threshold, where the agent
would be penalized for visiting sites with little to no trash.
The constant reward function outputs constant reward when
above the collection threshold to help the agent collect
all nearest trash locations—further explored in Section III.
The decreasing reward function outputs decaying reward
as a function of the fill-level relative to full to penalize
allowing locations to get close to the maximum fill-level F'.
All rewards are adjusted by a multiplier of 100 for more
resolution in relative comparisons explored further in Section
III. Note that a discount factor of v = 0.99 was selected for
this MDP formulation.

\/£—0.9 if L < threshold
R(L) =100 ,/% if decreasing
1 if constant
R Fill-Level Dependent Reward Functions
100 *
50

. > [,
80 100
—— Constant
- - - Decreasing

20

—50 +

—100 +

Fig. 2: Piecewise constant and decreasing reward functions
based on fill-level with an 80% collection threshold.

4) Transition Function: The transition function is deter-
ministic as the agent can move to another road cell or location
cell deterministically. The transition function also handles the
case where the action is nothing and will transition to the
current state with probability 1.

(a) Collecting trash from 1st site location

(b) Collecting trash from 2nd site location

Fig. 3: Example policy plots for a single day. Arrows indicate the optimal action in that state, where yellow arrows highlight
the travel path. The color scale of the roads indicate the Q-values from the policy, showing the gradient that the agent
follows. The green cells indicate trash locations above the collection threshold, thus deeming them ready to be collected.

C. Algorithms

For the first phase, resource allocation of agents, we solve
the problem using the A* path finding algorithm [3]. We
use A* to determine the shortest paths to all trash locations
and split those locations into partitions assigned to specific
agents. We limit the maximum number of agents to four, and
each agent has a unique origin point within the grid city.

For the second phase, efficient route planning, several
algorithms were investigated to solve for the optimal policy.
Notably, value iteration, Q-learning, and Sarsa(\). Value
iteration is an appropriate choice because we are using a
model-based approach with full knowledge of the entire state-
space, where the state-space is relatively small. Therefore,
we can learn the transition function 7' and reward reward
function R directly. With a Bellman residual of 1e —6, which
is used as a threshold for Q-value convergence, value iteration
converges in about 160 iterations. Therefore, the maximum
iterations was set to 200 to provide a bound. Value iteration
is guaranteed to converge to the optimal policy if all states
can be explored [4]. Figure 3 shows example policies learned
from value iteration.

We implemented a Q-learning approach to solve for an
optimal policy. Being a model-free approach, we do not learn
the transitions and rewards directly, but build up an estimate
as the simulation runs. We chose this to compare the model-
based and model-free approaches—also the implementation
is relatively fast, specifically due to the small state space.
Parameters for Q-learning include a learning rate a = 0.1,
a total of 200 episodes, and the frequency to evaluate the
trained policy at every 50 episodes (to reduce computation
time). We chose not to implement an exploration strategy like
epsilon greedy because we want to agent to deterministically
take the optimal action leading to trash site locations.

Choosing Sarsa(\) as another model-free approach was
specifically due to the feature of eligibility traces that comes

with this algorithm. Because we’ve included a nothing
action, and Q-learning and value iteration can be “shallow”
in their spreading of utility to neighboring states, we wanted
to test out an algorithm that back-tracks utility in a single
iteration.

Given the relatively small state-space, all three algorithms
converge to the identical optimal policy, with value iteration
running 15 times faster than Q-learning. Thus, further results
will focus solely on value iteration as it finds the optimal
policy efficiently.

D. Implementation

The implementation of the MDP is done in the Julia pro-
gramming language [10] leveraging the POMDPs.jl package
[11]. Julia is a well-equipped language for such a problem
as it is close to C in speed and as expressive as Python.

The design of the system models a grid world where
the agent can move to neighboring cells in search for a
reward. The major deviations from a standard grid world are
the restrictions the agents has in the environment, namely,
requiring the agent to move only on the roads. Normally, grid
world problems have a fixed reward that an agent has to find,
where the implementation of this system leverages the speed
of Julia to propagate the environment one time step, solve the
MDP using value iteration, follow the optimal path output by
the policy, resolve the policy to determine if more locations
are ready to be picked up, and then collect reward metrics.
All of that in a single iteration of the “real-time” system.
Because the implementation relies on the dynamic rewards
in the environment, which are functions of the current fill-
levels at each location, learning policies during run-time was
the most appropriate approach.

E. Assumptions

There are a few assumptions being made and we will
address them in this section. The first assumption is that the

1007

1007

1007

Fig. 4: A single agent in the 19 x 19 grid city with 36 trash
locations and overflowed accumulated trash shown in yellow.

fill-level at each location is reported to the agent. We are
assuming that each location is part of a network of sensors
that indicate, without error, the actual fill-level of trash
accumulation at that particular location. This assumption is
not paramount as cities are introducing smart waste bins more
frequently [7]. Another assumption we are making is that the
trash truck has unlimited fill capacity. This means the truck
can stay out and continue to collect trash during a single day
(i.e. time step) without having to deposit the garbage into
some central dump. What may seem obvious, but we also
assume that each location is adjacent to a road so that the
garbage truck can reach it. Lastly, an assumption that we
want to address is the maximum fill-level. Once a trash site
location hits the maximum fill-level, they will stay at that
level. The reward is still positive, but the agent prioritizes
collecting trash closer to the collection threshold before it
gets too full.

III. RESULTS AND ANALYSIS

This section will detail the analysis of the results from
various experiments. Analysis of oracle and baseline policies
versus the value iteration policy will be explored. This section
also covers experiments of sweeping scheduled collection
frequencies and their resulting metrics. Metrics include mean
reward, overflow count (the number of times trash was
collected when the fill-level was “full””), and mean path length
in miles. Experiments with multi-agent allocation will also be
analyzed. The following results were collected on the 19 x 19
grid city that has 36 trash site locations, as seen in Figure 4.

A. Oracle and Baseline

Oracle and baseline algorithms were implemented to pro-
vide a bounded comparison to the value iteration policy. The
chosen baseline algorithm will collect all trash locations at a
fixed frequency in units of days. This models how standard

trash collection in cities and towns operates—collecting
everywhere on a fixed schedule. We use the A* path finding
algorithm to iteratively determine the closest path between
the current trash locations. This gives us an accurate measure
of the total path length when the baseline travels to every
location. The A* algorithm uses the Manhattan distance as a
heuristic, which is helpful given the problem is modeled as
a grid city with road restrictions. The heuristic relaxes the
problem and allows for the search to bypass the roads.

The chosen oracle algorithm will collect trash from all
locations when they are deemed to be ready. The oracle is not
deployed on a fixed schedule, rather is dynamic to the needs
of the city. The oracle uses Euclidean distance from each
current trash site location to get a straight path to locations.

B. Reward Model Analysis

The constant and decreasing reward models shown in
Figure 2 are compared using the oracle, baseline, and value
iteration policies in the next sections. Analyzed metrics are
the mean reward, overflowed count, and mean path length.
The results are from the 19 x 19 city, run for 364 simulation
days or 52 weeks.

1) Mean Reward Analysis: Figure 5 highlights the mean
rewards when sweeping frequency of collection for a single
agent in the 19 x 19 city. Notice that the baseline results
show that given the policy of collecting every location at
the given frequency, the large negative mean reward is
expected. Looking at the bottom figure, we compare the value
iteration policy against the oracle in more detail (omitting
the baseline). Focusing first on the constant reward model
given by the solid lines, we see that the value iteration policy
hovers around the mean rewards of the oracle below about

Frequency Sweep: Reward

I I I I I I
(1 e R e e - —
o T
o L .
3 T
£ -Low| il '
o 3 /f —e— Value Iteration (C) ||
< / — -0 — Value Iteration (D)
g —2,000 + /‘/ ——+— Oracle (C) H
= / ~ = — Oracle (D)
I / ——=— Baseline (C) H
‘. ~ = — Bascline (D)
l l l l T T
0 5 10 15 20
[T T T T T |
100 - u
o) L il
g
S 80| :
gj)‘ = |
= 60 - u
< N b
< 40 |- N /‘ —e— Value Iteration (C) ||
E %, ’ — -0 — Value Iteration (D)
r M7 —+— Oracle (C) [l
20 ® ~ = — Oracle (D) {
l l l I l T T
0 5 10 15 20

Frequency (days)

Fig. 5: Mean reward when sweeping frequency of collection
for the 19 x 19 city. Bottom figure omits the baseline results.
Solid lines represent the constant reward model and dashed
lines represent the decreasing reward model.

Frequency Sweep: Overflow

I I
|| —e— Value Iteration (C)
— - — Value Iteration (D)

—+— Oracle (C)

200 ||

100 |-

Overflow Count

0 5 10 15 20
Frequency (days)

Fig. 6: Overflow count when sweeping frequency of collec-
tion for the 19 x 19 city. Solid lines represent the constant
reward model and dashed lines represent the decreasing
reward model.

a frequency of 10 days. When the frequency is set to two
or four days, notice that the value iteration policy gathers
higher mean rewards compared to the oracle. This can be
characterized as behavior resulting from clearing out trash
locations quickly, and allowing them to fill up once again.
Thus, collecting more constant reward.

Now focusing on the decreasing reward model in the
dashed lines, we can see that the value iteration policy never
gathers more reward than the oracle. This is due to the design
of the oracle—collecting trash at the exact day they’re ready,
i.e. met the collection threshold. Because collecting at the
collection threshold gives the agent the maximum reward,
the oracle always achieves the maximum reward. Because
the value iteration policy waits until the scheduled frequency
has arrived, it could allow for trash to accumulate past the
collection threshold, thus gathering less overall reward, yet
still positive.

Notice that when the frequency is one, the value iteration
and oracle policies produce the same mean rewards. Thus is
because the value iteration algorithm will determine which
locations are ready to be picked up then solve for the optimal
policy. Therefore, when the frequency is set to one day, the
value iteration algorithm will sample the current locations
daily to see if any are ready for collection, thus collecting
the trash when the reward is the highest. Also, notice for
the constant reward model when the frequency is two or
four, value iteration achieves the same mean reward as the
oracle. This can be explained based on the selected fill-rates
of this particular city, where they happen to land within the
collection threshold and the maximum fill-level during the
collection cycle. The reward is constant regardless of the fill-
level between the collection threshold and the maximum fill-
level. This helps explain why the decreasing reward model
does not quite achieve the same maximum reward as the
oracle for frequencies of two and four, but is fairly close.

2) Overflow Analysis: When analyzing how often trash
was collected when the fill-level was at its maximum, i.e.
overflowed, we found some surprising results with the value

iteration policy. In Figure 6, focus on when the frequency is
set to days between 4-9. This sawtooth behavior is counter-
intuitive. Initially, we thought that increasing the collection
frequency would therefore increase how often overflowed
trash was recorded. But, that is not the case. Consider the
frequencies of five and six days. Based on the 36 locations all
with a particular fill-rate, there can be cases where collecting
trash at a lower frequency, say every five days, can result
in other sites being just about ready to be picked up. Thus,
waiting another five days, those sites would be overflowed
by that point. Yet, if we set the frequency to six days, this
allows sites close to the collection threshold to reach it, thus
collected during that collection cycle.

Other interesting results from the overflow analysis are the
similarities between the constant and decreasing reward mod-
els. There are no notable differences between the constant
reward model and decreasing reward model for the value
iteration policy. This result is expected as changes to the
values of rewards above the collection threshold should not
affect the amount of overflowed collection visits. Notice that
the oracle never collects overflowed trash, per its design.

Notice that the baseline only collects overflowed trash
when the collection frequency is set to 21 days or 3 weeks.
This is based on the fill-rates of the 19 x 19 city trash site
locations. Given a large window of time between collection
visits, there are bound to be locations that reach their maxi-
mum in that 3 week span, even though the baseline collected
all trash during the prior collection cycle.

Lastly, notice the spike in the overflowed count for the
value iteration policy at a frequency of 13 days. This is a
product of the selected fill-rates for this city. The explanation
is similar to the sawtooth behavior around frequencies 4-9.

3) Mean Path Length Analysis: An important metric when
trying to reduce the usage of garbage trucks and optimize
their frequency is the mean path length of a given collection
deployment. Given that each cell in the grid city represents
a square mile, the units of the mean path length is in miles.
Note, after an agent has collected all trash locations, we send
the agent back to its origin using A* and count that path
length as well.

First, looking at the top plot in Figure 7, which includes the
baseline, we can see that since the baseline visits every site
during its collection cycle, the path length is extremely high
when the collection frequency is low, and gradually reduces
based on the spread out collection frequency. Notice that the
oracle and value iteration policies always achieve a smaller
mean path length, regardless of collection frequency.

The bottom plot in Figure 7 omits the baseline results
to focus on the comparison between the oracle and value
iteration policies. Observe that the constant reward model
is always at or below the decreasing reward model. This
result is expected because the design of the decreasing reward
model emphasizes collecting trash at sites closer to the
collection threshold first. Thus, leaving the overflowed trash
for the end of its collection route, therefore potentially going
past locations in the process of collecting others. When the
reward model is constant, the agent is deployed to collect

Frequency Sweep: Path Length
200 T T T T

¥ —e— Value Iteration (C)
= \ — - — Value Iteration (D) ||

150\

100 |- & n

ot
[en)
T
/
o
|

o
T
|

Mean Path Length (mi.)

—e— Value Iteration (C)
— % — Value Iteration (D) [

—_
[en}
T

(=2}
T

Mean Path Length (mi.)
o0
T

0) 10 15 20
Frequency (days)

Fig. 7: Mean path length in miles when sweeping frequency
of collection for the 19 x 19 city. Solid lines represent
the constant reward model and dashed lines represent the
decreasing reward model.

trash and will collect the closest trash site locations, in that
order. This is highlighted in the fact that the constant reward
model is always at or below the decreasing reward model.

As a reminder, we used Euclidean distance to measure
the path length for the oracle. What we observe in Figure
7 is that the value iteration policy can achieve a shorter
mean path length above a collection frequency of 11 and
13 days, for the constant and decreasing reward models
respectively. Yet, referencing back to the mean rewards in
Figure 5 and overflowed count in Figure 6, we can see
selecting a collection frequency above about 10 days results
in a degradation of the reward and overflowed metrics. Based
on these results, we will continue analysis solely with the
constant reward model.

C. Multi-Agent Analysis

The first phase of the system is to determine if other agents
could also be deployed to help collect the available trash.
We use the A* path finding algorithm to determine if trash
locations are closer to specific agents at each corner of the
city. We limit the number of agents to be between 1-4, with
each agent occupying a specific corner. See Figure 9, which
shows the same time step as Figure 4 but with four agents
occupying partitions of locations within the grid city.

Figure 8 plots the mean path length for the value iteration
policy over the 19 x 19 city for 1-4 agents, sweeping col-
lection frequency. Intuitively, when a total of four agents are
selected, the overall path length is minimized—except in the
case for the collection frequency of 21 days. Notice that the
single agent value iteration policy slightly outperforms the
four agent policy during this 21 day collection frequency.

Multi-Agent Frequency Sweep: Path Length

I I

g [—e— Value Iteration (1 agent)
:::/ 20 | —=— Value Iteration (2 agents) |{
= | —=— Value Iteration (3 agents) | |
éﬁ —— Value Iteration (4 agents)

3 15 H
= [N
=

= 10 |
& i |
g

;‘v 5 i | | | | | i
=

0 5 10 15 20
Frequency (days)

Fig. 8: Mean path length in miles for multi-agent allocation
when sweeping frequency of collection for the 19 x 19 city.

This is due to many of the trash locations being ready to be
collected, therefore, each agent has to travel to almost all of
the locations. When it’s just a single agent, the agent traverses
the entire city optimally. With four agents, they focus on their
city partitions.

D. Emissions Analysis

The aim of this work is to show that an automated trash
collection system can be optimized to reduce frequency of
visits, thus reducing the total carbon emissions output by the
garbage trucks and save cost on gas per day. Using emissions
data and miles per gallon (MPG) data for garbage trucks from
[1], we have compared the value iteration policy using the
collection frequency of eight days against the baseline and
oracle policies. Based on the results from Section III-A, we
chose to analyze a collection frequency of eight days. The
choice of eight days weights out maximizing rewards, but
more importantly, minimizing path length and is the highest
frequency with an overflow of zero.

The emissions output results and cost of gas per day are
highlighted in Table I. As expected, the oracle is ideal with
respect to emissions output and gas cost. Focus on the value

TABLE I: Average emissions output and gas cost.

Num. Emissions Gas Cost
Agents Algorithm” (CO3 kg/day)" (USD/day)¥8
Oracle 15.95 $6.02

1 Baseline 52.18 $19.69
Value iteration 18.41 $6.94

Oracle 16.50 $6.22

2 Baseline 44.73 $16.87
Value iteration 40.69 $15.35

Oracle 12.40 $4.68

3 Baseline 43.07 $16.25
Value iteration 21.58 $8.14

Oracle 7.85 $2.96

4 Baseline 38.03 $14.39
Value iteration 18.10 $6.83

* Collection frequency of every eight days.

T Average of 2.23 kg of COg per mile for garbage trucks [1]
¥ Average of 4.63 miles per gallon for garbage trucks [1]

8 Diesel price in California of $3.904 per gallon [12]

100

(a) Agent 1 (b) Agent 2

(c) Agent 3 (d) Agent 4

Fig. 9: Multi-agent allocation given starting origins at the four corners of the 19 x 19 grid city.

iteration and baseline results. The value iteration always
outperforms the baseline policy for all number of agents
allocated. Notably, a single agent value iteration policy has
a 64.7% reduction in daily emissions and gas cost compared
to the baseline. A two agent value iteration policy has a
9.1% reduction, a three agent policy has a 49.9% reduction,
and an four agent policy has a 52.4% reduction. From these
results, we can see that an automated trash collection system,
formulated as an MDP, can save money and reduce carbon
emissions.

IV. CONCLUSION

An automated trash collection system can be widely ap-
plicable in a real-world setting. Certain municipalities have
similar systems in place to plan routes [2], [5]. Expanding on
this work could turn the system into a decision support tool
for city waste management departments. Converting the grid
world formulation to integrated real-world maps would be
trivial as the problem is modeled as a graph between nodes.
Interfacing with smart garbage bins in cities could provide
the measurement of the fill-level at specific locations. Based
on the static nature of trash collection schedules, a more
dynamic/reactive approach could benefit towns and cities—
both monetarily and environmentally.

In this paper we proposed a trash collection system in order
to reduce the usage of garbage trucks. We split the problem
into two phases: resource allocation of garbage trucks and
optimal route planning. We described the formulation of
the problem as a search problem using A* and an MDP
to represent the state, actions, and rewards in the city en-
vironment. The MDP was solved using the value iteration
algorithm to produce the optimal policy efficiently. The work
also produced a method to tune the frequency of scheduled
trash collection visits. Comparing against a naive baseline
system and an oracle system showed that a value iteration
policy has major benefits in both emissions output and cost
of gas on a per day basis.

ACKNOWLEDGMENT

We would like to thank the Stanford Intelligent Sys-
tems Laboratory for their development of the following
Julia packages: POMDPs.jl, DiscreteValuelteration.jl, and

TabularTDLearning.jl. We would also like to thank Mykel
Kochenderfer and Shushman Choudhury for their insight.

REFERENCES

[1] Gurdas Sandhu, Henry Frey, Shannon Bartelt-Hunt, and Elizabeth
Jones. In-use activity, fuel use, and emissions of heavy duty diesel
roll-off refuse trucks. Journal of the Air and Waste Management
Association, 65:306-323, 02 2015.

[2] Shan-Huen Huang and Pei-Chun Lin. Vehicle routing—scheduling
for municipal waste collection system under the “keep trash off the
ground” policy. Omega, 55:24 — 37, 2015.

[3] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. /EEE Transactions on
Systems Science and Cybernetics, 4(2):100-107, July 1968.

[4] M. J. Kochenderfer, C. Amato, G. Chowdhary, J. P. How, H. J. D.
Reynolds, J. R. Thornton, P. A. Torres-Carrasquillo, N. K. Ure, and
J. Vian. Decision Making Under Uncertainty. MIT Press, 2015.

[5]1 Luis Santos, Jodo Coutinho-Rodrigues, and John R. Current. Imple-
menting a multi-vehicle multi-route spatial decision support system for
efficient trash collection in portugal. Transportation Research Part A:
Policy and Practice, 42(6):922 — 934, 2008.

[6] B.L. Golden, J.S. Dearmon, and E.K. Baker. Computational experi-
ments with algorithms for a class of routing problems. Computers and
Operations Research, 10(1):47 — 59, 1983.

[7]1 S. Dugdhe, P. Shelar, S. Jire, and A. Apte. Efficient waste collection
system. In 2016 International Conference on Internet of Things and
Applications (IOTA), pages 143—147, Jan 2016.

[8] Diego Gabriel Rossit, Sergio Nesmachnow, and Jamal Toutouh. A
bi-objective integer programming model for locating garbage accumu-
lation points: a case study. Revista Facultad de Ingenieria Universidad
de Antioquia, (93):70-81, 2019.

[9]1 Benjamin Y Clark. The impacts of autonomous vehicles on local
government budgeting and finance: Case of solid waste collection.
Available at SSRN 3471853, 2019.

[10] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral Shah. Julia:
A fresh approach to numerical computing. 07 2015.

[11] Maxim Egorov, Zachary N. Sunberg, Edward Balaban, Tim A.
Wheeler, Jayesh K. Gupta, and Mykel J. Kochenderfer. POMDPs. jl: A
framework for sequential decision making under uncertainty. Journal
of Machine Learning Research, 18(26):1-5, 2017.

[12] Weekly retail gasoline and diesel prices. https://www.eia.gov/dnav/pet/
pet_pri_gnd_dcus_sca_w.htm. Accessed: 12/13/2019.

https://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_sca_w.htm
https://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_sca_w.htm

	Introduction
	Approach
	Environment
	Model
	State-Space
	Action-Space
	Reward Function
	Transition Function

	Algorithms
	Implementation
	Assumptions

	Results and Analysis
	Oracle and Baseline
	Reward Model Analysis
	Mean Reward Analysis
	Overflow Analysis
	Mean Path Length Analysis

	Multi-Agent Analysis
	Emissions Analysis

	Conclusion
	References

