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7 Deep Q-Learning and CNNs

From CS234 Winter 2021, Tian Tan
and Emma Brunskill, Stanford Uni-
versity.

7.1 Value-Based Deep Reinforcement Learning

In this section, we introduce three popular value-based deep reinforcement learn-
ing (RL) algorithms: Deep Q-Network (DQN),1 Double DQN,2 and Dueling DQN.3 1 V. Mnih, K. Kavukcuoglu, D. Sil-

ver, A.A. Rusu, J. Veness, M.G.
Bellemare, et al., ‘‘Human-Level
Control Through Deep Reinforce-
ment Learning,’’ Nature, vol. 518,
no. 7540, pp. 529–533, 2015.
2 H. Van Hasselt, A. Guez, and D.
Silver, ‘‘Deep Reinforcement Learn-
ing with Double Q-Learning,’’ in
AAAI Conference on Artificial Intelli-
gence (AAAI), vol. 30, 2016.
3 Z. Wang, T. Schaul, M. Hessel,
H. Hasselt, M. Lanctot, and N.
Freitas, ‘‘Dueling Network Archi-
tectures for Deep Reinforcement
Learning,’’ in International Confer-
ence on Machine Learning (ICML),
2016.

All the three neural architectures are able to learn successful policies directly
from high-dimensional inputs, e.g. preprocessed pixels from video games, by using
end-to-end reinforcement learning, and they all achieved a level of performance
that is comparable to a professional human games tester across a set of 49 names
on Atari 2600.4

4 M.G. Bellemare, Y. Naddaf, J. Ve-
ness, andM. Bowling, ‘‘TheArcade
Learning Environment: An Evalua-
tion Platform for General Agents,’’
Journal of Artificial Intelligence Re-
search, vol. 47, pp. 253–279, 2013.

Convolutional Neural Networks (CNNS)5 are used in these architectures for

5 A. Krizhevsky, I. Sutskever, and
G. E. Hinton, ‘‘Imagenet Classifica-
tion with Deep Convolutional Neu-
ral Networks,’’ Advances in Neu-
ral Information Processing Systems
(NeurIPS), vol. 25, pp. 1097–1105,
2012.

feature extraction from pixel inputs. Understanding the mechanisms behind
feature extraction via CNNs can help better understand how DQN works. The
Stanford CS231N course website contains wonderful examples and introduction
to CNNs. Here, we direct the reader to the following link for more details on
CNNs.6 The remaining of this section will focus on generalization in RL and

6 http://cs231n.github.io/conv

olutional-networks

value-based deep RL algorithms.

7.1.1 Action-value function approximation

In the previous lecture, we use parameterized function approximators to represent
the action-value function (i.e. Q-function). If we denote the set of parameters as
w, the Q-function in this approximation setting is represented as q̂(s, a, w).

Let’s first assume we have access to an oracle q(s, a), the approximate Q-
function can be learned by minimizing the mean-squared error between the
true action-value function q(s, a) and its approximated estimates:

J(w) = E

[(
q(s, a)− q̂(s, a, w)

)2
]

(7.1)

http://cs231n.stanford.edu
https://http://cs231n.github.io/convolutional-networks
https://http://cs231n.github.io/convolutional-networks


2 chapter 7. deep q-learning and cnns

We can use stochastic gradient descent (SGD) to find a local minimum of J by
sampling gradients w.r.t. parameters w and updating w as follows:

∆(w) = −1
2

α∇w J(w) = αE

[(
q(s, a)− q̂(s, a, w)

)
∇wq̂(s, a, w)

]
(7.2)

where α is the learning rate. In general, the true action-value function q(s, a) is
unknown, so we substitute the q(s, a) in equation (7.2) with an approximate
learning target.

In Monte Carlo methods, we use an unbiased return Gt as the substitute target
for episodic MDPs:

∆(w) = α(Gt − q̂(s, a, w))∇wq̂(s, a, w) (7.3)

For SARSA, we instead use bootstrapping and present a TD (biased) target
r + γq̂(s′, a′, w), which leverages the current function approximation value,

∆(w) = α(r + γq̂(s′, a′, w)− q̂(s, a, w))∇wq̂(s, a, w) (7.4)

where a′ is the action taken at the next state s′ and γ is a discount factor. For
Q-learning, we use a TD target r + γ maxa′ q̂(s′, a′, w) and update w as follows:

∆(w) = α(r + γ max
a′

q̂(s′, a′, w)− q̂(s, a, w))∇wq̂(s, a, w) (7.5)

In subsequent sections, we will introduce how to approximate q̂(s, a, w) by
using a deep neural network and learn neural network parameters w via end-to-
end training.

7.1.2 Generalization: Deep Q-network (DQN)

The performance of linear function approximators highly depends on the quality
of features. In general, handcrafting an appropriate set of features can be diffcult
and time-consuming. To scale up to making decisions in really large domains (e.g.
huge state space) and enable automatic feature extraction, deep neural networks
(DNNs) are used as function approximators.

2021-02-18 21:56:43-08:00, draft: send comments to mossr@cs.stanford.edu toc



7.1 . value-based deep reinforcement learning 3

Figure 7.1. Illustration of the deep
Q-network: the input to the net-
work consists of an 84×84×4 pre-
processed image, followed by three
convolutional layers and two fully
connected layers with a single out-
put for each valid action. Each hid-
den layer is followed by a rectifier
nonlinearity (ReLU).

DQNarchitecture. An illustration of theDQNarchitecture is shown in figure 7.1.
The network takes preprocessed pixel image from Atari game environment (see
section 7.1.3 for preprocessing) as inputs, and outputs a vector containing Q-
values for each valid action. The preprocessed pixel input is a summary of the
game state s, and a single output unit represents the q̂ function for a single action
a. Collectively, the q̂ function can be denoted as q̂(s, w) ∈ R|A|. For simplicity, we
will still use notation q̂(s, a, w) to represent the estimated action-value for a (s, a)
pair in the following paragraphs.

Details of the architecture. The input consists of an 84 × 84 × 4 image. The
first convolutional layer has 32 filters of size 8 × 8 with stride 4 and convolves
with the input image, followed by a rectifier nonlinearity (ReLU).7 The second 7 V. Nair and G. E. Hinton, ‘‘Rec-

tified Linear Units Improve Re-
stricted Boltzmann Machines,’’ in
Icml, 2010.

hidden layer convolves 64 filters of 4× 4with stride 2, again followed by a rectifier
nonlinearity. This is followed by a third convolutional layer that has 64 filters of 3
× 3 with stride 1, followed by a ReLU. The final hidden layer is a fully-connected
layer with 512 ReLUs. The output layer is a fully-connected linear layer.

toc 2021-02-18 21:56:43-08:00, draft: send comments to mossr@cs.stanford.edu



4 chapter 7. deep q-learning and cnns

7.1.3 Preprocessing raw pixels

The raw Atari 2600 frames are of size (210 × 160 × 3), where the last dimension
is corresponding to the RGB channels. The preprocessing step adopted in Mnih
et al. aims at reducing the input dimensionality and dealing with some artifacts
of the game emulator. We summarize the preprocessing as follows:

• Single frame encoding: to encode a single frame, the maximum value for each
pixel color value over the frame being encoded and the previous frame is re-
turned. In other words, we return a pixel-wisemax-pooling of the 2 consecutive
raw pixel frames.

• Dimensionality reduction: extract the Y channel, also known as luminance,
from the encoded RGB frame and rescale it to (84 × 84 × 1).

The above preprocessing is applied to the 4 most recent raw RGB frames and the
encoded frames are stacked together to produce the input (of shape (84 × 84 ×
4)) to the Q-network. Stacking together the recent frames as game state is also a
way to transform the game environment into a (almost) Markovian world.

7.1.4 Training algorithm for DQN

The use of large deep neural network function approximators for learning action-
value functions has often been avoided in the past since theoretical performance
guarantees are impossible, and learning and training tend to be very unstable. In
order to use large nonlinear function approximators and scale online Q-learning,
DQN introduced two major changes: the use of experience replay, and a separate
target network. The full algorithm is presented in algorithm 7.1. Essentially, the
Q-network is learned by minimizing the following mean squared error

J(w) = E(st, at, rt, st+1)

[(
yDQN

t − q̂(st, at, w)
)2
]
, (7.6)

where yDQN
t is the one-step-ahead learning target

yDQN
t = rt + γ max

a′
q̂(st+1, a′, w−), (7.7)

where w− represents the parameters of the target network,8 and the parameters 8 Note, although the learning target
is computed from the target net-
work with w−, the targets yDQN

t
are considered to be fixed when
making updates to w.

w of the online network are updated by sampling gradients from minibatches of
past transition tuples (st, at, rt, st+1).

2021-02-18 21:56:43-08:00, draft: send comments to mossr@cs.stanford.edu toc



7.1 . value-based deep reinforcement learning 5

s1, a1, r1, s2
s2, a2, r2, s3

. . .
st, at, rt, st+1

Table 7.1. Replay buffer: the tran-
sition (s, a, r, s′) is uniformly sam-
pled from the replay buffer for up-
dating Q-network.

Experience replay. The agent’s experiences (or transitions) at each time step
et = (st, at, rt, st+1) are stored in a fixed-sized dataset (or replay buffer) Dt =

{e1, . . . , et}. The replay buffer is used to store the most recent k = 1 million
experiences (see table 7.1 for an illustration of replay buffer). The Q-network is
updated by SGD with sampled gradients from minibatch data. Each transition
sample in the minibatch is sampled uniformly at random from the pool of stored
experiences, (s, a, r, s′) ∼ U (D). This approach has the following advantages over
standard online Q-learning:

• Greater data efficiency: each step of experience can be potentially used for
many updates, which improves data efficiency.

• Remove sample correlations: randomizing the transition experiences breaks
the correlations between consecutive samples and therefore reduces the vari-
ance of updates and stabilizes the learning.

• Avoiding oscillations or divergence: the behavior distribution is averaged
over many of its previous states and transitions, smoothing out learning and
avoiding oscillations or divergence in the parameters. (Note that when using
experience replay, it is required to use an off-policy method, e.g. Q-learning,
because the current parameters are different from those used to generate the
samples).

Limitation of experience replay. The replay buffer does not differentiate im-
portant transitions or informative transitions and it always overwrites with the
recent transitions due to fixed buffer size. Similarly, the uniform sampling from
the buffer gives equal importance to all stored experiences. A more sophisticated
replay strategy, prioritized replay, has been proposed by Schaul et al., which
replays important transitions more frequently, and therefore the agent learns
more efficiently.

Target network. To further improve the stability of learning and deal with non-
stationary learning targets, a separate target network is used for generating the
targets yj in the Q-learning update. More specifically, every C updates/steps the
target network q̂(s, a, w−) is updated by copying the parameters’ values (w− = w)

from the online network q̂(s, a, w), and the target network remains unchanged

toc 2021-02-18 21:56:43-08:00, draft: send comments to mossr@cs.stanford.edu



6 chapter 7. deep q-learning and cnns

and generates targets yj for the following C updates. This modification makes the
algorithm more stable compared to standard online Q-learning, and C = 10000
was used in the original DQN.

1: Initialize replay buffer D with a fixed capacity
2: Initialize action-value function q̂ with random weights w
3: Initialize target action-value function q̂target with random weights w−

4: for episode m = 1, . . . , M do
5: Observe initial frame x1 and preprocess frame to get state s1

6: for time step t = 1, . . . , T do

7: Select action at =

random action w/ probability ε

arg maxa q̂(st, a, w) otherwise
8: Execute action at in simulator/emulator and observe reward rt and image xt+1

9: Preprocess st, xt+1 to get st+1 and store transition (st, at, rt, st+1) in D
10: Sample uniformly a random minibatch of N transitions (sj, aj, rj, sj+1) from D

11: Set yj =

rj if episode ends at step j + 1

yj = rj + γ maxa′ q̂target(sj+1, a′, w−) otherwise

12: Perform a SGD step on J(w) = 1
N ∑N

j=1
(
yj = q̂(sj, aj, w)

)2 w.r.t. parameters w
13: Every C steps, reset w− = w

Algorithm 7.1. Deep Q-learning

7.1.5 Training details

In the original DQN paper,9 a different network (or agent) was trained on each 9 V. Mnih, K. Kavukcuoglu, D. Sil-
ver, A.A. Rusu, J. Veness, M.G.
Bellemare, et al., ‘‘Human-Level
Control Through Deep Reinforce-
ment Learning,’’ Nature, vol. 518,
no. 7540, pp. 529–533, 2015.

game with the same architecture, learning algorithm and hyperparameters. The
authors clipped all positive rewards from the game environment at +1 and all
negative rewards at −1, which makes it possible to use the same learning rate
across all different games. For games where there is a life counter (e.g. Breakout),
the emulator also returns the number of lives left in the game, which was then
used to mark the end of an episode during training by explicitly setting future
rewards to zeros. They also used a simple frame-skipping technique (or action
repeat): the agent selects actions on every 4-th frame instead of every frame,
and its last action is repeated on skipped frames. This reduces the frequency of

2021-02-18 21:56:43-08:00, draft: send comments to mossr@cs.stanford.edu toc



7.2. reducing bias: double deep q-network (ddqn) 7

decisions without impacting the performance too much and enables the agent to
play roughly 4 times more games during training.

RMSProp10 was used by Mnih et al. for training DQN with minibatches of size 10 https://www.cs.toronto.edu

/~tijmen/csc321/slides/lectur

e_slides_lec6.pdf
32. During training, they applied ε-greedy policy with ε linearly annealed from
1.0 to 0.1 over the first million steps, and fixed at 0.1 afterwards. The replay buffer
was used to store the most recent 1 million transitions. For evaluation at test time,
they used ε-greedy policy with ε = 0.05.

7.2 Reducing bias: Double deep Q-network (DDQN)

The max operator in DQN, uses the same network values both to select and to
evaluate an action. This setting makes it more likely to select overestimated values
and resulting in overoptimistic target value estimates. Van Hasselt, Guez, and Sil-
ver also showed that the DQN algorithm suffers from substantial overestimations
in some games in the Atari 2600. To prevent overestimation and reduce bias, we
can decouple the action selection from action evaluation.

Recall in Double Q-learning, two action-value functions are maintained and
learned by randomly assigning transitions to update one of the two functions,
resulting in two different sets of function parameters, denoted here as w and w′ .
For computing targets, one function is used to select the greedy action and the
other to evaluate its value:

yDoubleQ
t = rt + γq̂(st+1, arg max

a′
q̂(st+1, a′, w), w′) (7.8)

Note that the action selection (arg max) is due to the function parameters w,
while the action value is evaluated by the other set of parameters w′.

The idea of reducing overestimations by decoupling action selection and action
evaluation in computing targets can also be extended to deep Q-learning. The
target network in DQN architecture provides a natural candidate for the second
action-value function, without introducing additional networks. Similarly, the
greedy action is generated according to the online network with parameters w,
but its value is estimated by the target network with parameters w−. The resulting
algorithm is referred as Double DQN,11 which just replaces the target computation 11 H. Van Hasselt, A. Guez, and D.

Silver, ‘‘Deep Reinforcement Learn-
ing with Double Q-Learning,’’ in
AAAI Conference on Artificial Intelli-
gence (AAAI), vol. 30, 2016.

of yj in algorithm 7.1 by the following update target:

yDoubleDQN
t = rt + γq̂(st+1, arg max

a′
q̂(st+1, a′, w), w−) (7.9)

toc 2021-02-18 21:56:43-08:00, draft: send comments to mossr@cs.stanford.edu
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8 chapter 7. deep q-learning and cnns

The update to the target network stays unchanged from DQN, and remains a
periodic copy of the online network w. The rest of the DQN algorithm remains
intact.

7.3 Decoupling value and advantage: Dueling DQN

This section introduces the dueling DQN algorithm.12 12 Z. Wang, T. Schaul, M. Hessel,
H. Hasselt, M. Lanctot, and N.
Freitas, ‘‘Dueling Network Archi-
tectures for Deep Reinforcement
Learning,’’ in International Confer-
ence on Machine Learning (ICML),
2016.

Figure 7.2. Single stream deep
Q-network (top) and the dueling
deep Q-network (bottom). The du-
eling network has two streams to
separately estimate (scalar) state-
value V(s) and the advantages
A(s, a) for each action; the green
output module implements ?? to
combine the two streams. Both net-
works output Q-values for each ac-
tion.

7.3.1 The dueling network architecture

Before we delve into dueling architecture, let’s first introduce an important quan-
tity, the advantage function, which relates the value and Q0functions (assume
following a policy π):

Aπ(s, a) = Qπ(s, a)−Vπ(s) (7.10)

Recall Vπ(s) = Ea∼π(s)[Qπ(s, a)], thus we have Ea∼π(s)[Aπ(s, a)] = 0. Intuitively,
the advantage function subtracts the value of the state from the Q function to get
a relative measure of the importance of each action.

2021-02-18 21:56:43-08:00, draft: send comments to mossr@cs.stanford.edu toc



7.3. decoupling value and advantage: dueling dqn 9

Like in DQN, the dueling network is also a DNN function approximator for
learning the Q-function. Differently, it approximates the Q-function by decoupling
the value function and the advantage function. Figure 7.2 illustrates the dueling
network architecture and the DQN for comparison.

The lower layers of the dueling network are convolutional as in the DQN.
However, instead of using a single stream of fully connected layers for Q-value
estimates, the dueling network uses two streams of fully connected layers. One
stream is used to provide value function estimate given a state, while the other
stream is for estimating advantage function for each valid action. Finally, the two
streams are combined in a way to produce and approximate the Q-function. As
in DQN, the output of the network is a vector of Q-values, one for each action.

Note that since the inputs and the final outputs (combined two streams) of the
dueling network are the same as that of the original DQN, the training algorithm
(algorithm 7.1) introduced above for DQN and for Double DQN can also be
applied here to train the dueling architecture. The separated two-stream design
is based on the following observations or intuitions from the authors:

• For many states, it is unnecessary to estimate the value of each possible action
choice. In some states, the action selection can be of great importance, but in
many other states the choice of action has no repercussion on what happens
next. On the other hand, the state value estimation is of significant importance
for every state for a bootstrapping based algorithm like Q-learning.

• Features required to determine the value function may be different than those
used to accurately estimate action benefits.

Combing the two streams of fully connected layers for Q-value estimate is not a
trivial task. This aggregating module (shown in green lines in figure 7.2), in fact,
requires very thoughtful design, which we will see in the next subsection.

7.3.2 Q-value estimation

From the definition of advantage function (7.10), we have Qπ(s, a) = Aπ(s, a) +
Vπ(s), and Ea∼π(s)[Aπ(s, a)] = 0. Furthermore, for a deterministic policy (com-
monly used in value-based deep RL), a∗ = arg maxa′∈A Q(s, a′), it follows that
Q(s, a∗) = V(s) and hence A(s, a∗) = 0. The greedily selected action has zero
advantage in this case.

toc 2021-02-18 21:56:43-08:00, draft: send comments to mossr@cs.stanford.edu



10 chapter 7. deep q-learning and cnns

Now consider the dueling network architecture in figure 7.2 for function ap-
proximation. Let’s denote the scalar output value function from one stream of
the fully-connected layers as v̂(s, w, wv), and denote the vector output advantage
function from the other stream as A(s, a, w, wA). We use w here to denote the
shared parameters in the convolutional layers, and use wv and wA to represent
parameters in the two different streams of fully-connected layers. Then, proba-
bly the most simple way to design the aggregating module is by following the
definition:

q̂(s, a, w, wA, wv) = v̂(s, w, wv) + A(s, a, w, wA) (7.11)

The main problem with this simple design is that equation (7.11) is unidenti-
fiable. Given q̂, we cannot recover v̂ and A uniquely, e.g. adding a constant to v̂
and subtracting the same constant from A gives the same Q-value estimates. The
unidentifiable issue is mirrored by poor performance in practice.

To make Q-function identifiable, recall in the deterministic policy case dis-
cussed above, we can force the advantage function to have zero estimate at the
chosen action. Then, we have

q̂(s, a, w, wA, wv) = v̂(s, w, wv) +

(
A(s, a, w, wA)−max

a′∈A
A(s, a′, w, wA)

)
(7.12)

For a deterministic policy,

a∗ = arg max
a′∈A

q̂(s, a′, w, wA, wv) = arg max
a′∈A

A(s, a′, w, wA), (7.13)

equation (7.12) gives q̂(s, a∗, w, wA, wv) = v̂(s, w, wv). Thus, the stream v̂ pro-
vides an estimate of the value function, and the other stream A generates advan-
tage estimates.

Wang et al. also proposed an alternative aggregating module that replaces the
max with a mean operator:

q̂(s, a, w, wA, wv) = v̂(s, w, wv) +

(
A(s, a, w, wA)−

1
|A|∑a′

A(s, a′, w, wA)

)
(7.14)

2021-02-18 21:56:43-08:00, draft: send comments to mossr@cs.stanford.edu toc



7.3. decoupling value and advantage: dueling dqn 11

Although this design in some sense loses the original semantics of v̂ and A,
the author argued that it improves the stability of learning: the advantages only
need to change as fast as the mean, instead of having to compensate any change
to the advantage of the optimal action. Therefore, the aggregating module in the
dueling network13 is implemented following equation (7.14). When acting, it 13 Z. Wang, T. Schaul, M. Hessel,

H. Hasselt, M. Lanctot, and N.
Freitas, ‘‘Dueling Network Archi-
tectures for Deep Reinforcement
Learning,’’ in International Confer-
ence on Machine Learning (ICML),
2016.

suffices to evaluate the advantage stream to make decisions.
The advantage of the dueling network lies in its capability of approximating

the value function efficiently. This advantage over single-stream Q networks
grows when the number of actions is large, and the dueling network achieved
state-of-the-art results on Atari games as of 2016.

toc 2021-02-18 21:56:43-08:00, draft: send comments to mossr@cs.stanford.edu



8 Policy Gradient

From CS234 Winter 2021, Luke
Johnston and Emma Brunskill,
Stanford University.

8.1 Introduction to Policy Search

So far, in order to learn a policy, we have focused on value-based approaches
where we find the optimal state value function or state-action value function with
parameters θ,

Vθ(s) ≈ Vπ(s) (8.1)
Qθ(s, a) ≈ Qπ(s, a) (8.2)

and then use Vθ or Qθ to extract a policy, e.g. with ε-greedy. However, we can
also use a policy-based approach to directly parameterize the policy:

πθ(a | s) = P[a | s; θ] (8.3)

In this setting, our goal is to directly find the policy with the highest value
function Vπ , rather than first finding the value-function of the optimal policy
and then extracting the policy from it. Instead of the policy being a look-up table
from states to actions, we will consider stochastic policies that are parameterized.
Finding a good policy requires two parts:

1. Good policy parameterization: our function approximation and state/action
representations must be expressive enough

2. Effective search: we must be able to find good parameters for our policy func-
tion approximation

Policy-based RL has a few advantages over value-based RL:

• Better convergence properties (see chapter 13.3 of Sutton and Barto)

• Effectiveness in high-dimensional or continuous action spaces, e.g. robotics.
One method for continuous action spaces is covered in ??.

• Ability to learn stochastic policies. See the following section.

The disadvantages of policy-based RL methods are:
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• They typically converge to locally rather than globally optimal policies, since
they rely on gradient descent.

• Evaluating a policy is typically data ineffcient and high variance.

8.2 Stochastic Polices

In this section, we will briefly go over two environments in which a stochastic
policy is better than any deterministic policy.

Rock-paper-scissors. For a relatable example, in the popular zero-sum
game of rock-paper-scissors, any policy that is not uniformly random

P(rock | s) = 1/3

P(scissors | s) = 1/3

P(paper | s) = 1/3

can be exploited.

Example 8.1. A deterministic rock-
paper-scissors policy could be ex-
ploited.

8.2.1 Example: Aliased gridworld

In the gridworld environment in figure 8.1, suppose that the agent can move
in the four cardinal directions, so its actions space is A = {N, S, E, W}. However,
suppose that it can only sense the walls around its current location. Specifically,
it observes features of the following form for each direction:

Figure 8.1. In this partially observ-
able gridworld environment, the
agent cannot distinguish between
the gray states.φ(s) =

1(wall to N)

· · ·
1(wall to W)


Note that its observations are not fully representative of the environment, as it

cannot distinguish between the two gray squares. This also means that its domain
is not Markov. Hence, a deterministic

Figure 8.2. For this deterministic
policy, the agent cannot ‘‘escape’’
from the upper-left two states.

policy must either learn to always go left in the gray squares, or always go
right. Neither of these policies is optimal, since the agent can get stuck in one
corner of the environment, seen in figure 8.2.
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14 chapter 8. policy gradient

However, a stochastic policy can learn to randomly select a direction in the gray
states, guaranteeing that it will eventually reach the reward from any starting
location. In general, stochastic policies can help overcome an adversarial or non-
stationary domain and cases where the state-representation is not Markov. Figure 8.3. A stochastic policy

which moves E or W with equal
probability in the gray states will
reach the goal in a few time steps
with high probability.

8.3 Policy Optimization

In this section, we disuss methods to directly optimize the policy parameters.

8.3.1 Policy objective functions

Once we have defined a policy πθ(a | s), we need to able to measure how it
is performing in order to optimize it. In an episodic environment, a natural
measurement is the start value of the policy, which is the expected value of the
start state:

J1(θ) = Vπθ (s1) = Eπθ
[v1] (8.4)

In continuing environments we can use the average value of the policy, where
dπθ (s) is the stationary distribution of πθ :

Javg-V(θ) = ∑
s

dπθ (s)Vπθ (s) (8.5)

or alternatively we can use the average reward per time-step:

Javg-R(θ) = ∑
s

dπθ (s)∑
a

πθ(a | s)R(s, a) (8.6)

In these notes we discuss the episodic case, but all the results we derive can be
easily extended to the non-episodic case. We will also focus on the case where
the discount γ = 1, but again, the results are easily extended to general γ.

8.3.2 Optimization methods

With an objective function, we can treat our policy-based reinforcement learning
problem as an optimization problem. In these notes, we focus on gradient de-
scent, because recently that has been the most common optimization method for
policy-based RL methods. However, it is worth considering some gradient-free
optimization methods, including the following:
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8.4. policy gradient 15

• Hill climbing

• Simplex / amoeba / Nelder Mead

• Genetic algorithms

• Cross-entropy method (CEM)

• Covariance Matrix Adaptation (CMA)

• Evolution strategies

These methods have the advantage over gradient-based methods in that they
do not have to compute a gradient of the objective function. This allows the
policy parameterization to be non-differentiable, and these methods are also
often easy to parallelize. Gradient-free methods are often a useful baseline to try,
and sometimes they can work embarrassingly well.1 However, this methods are 1 https://openai.com/blog/evol

ution-strategies/usually not very sample effcient because they ignore the temporal structure of the
rewards—updates only take into account the total reward over the entire episode,
and they do not break up the reward into different rewards for each state in the
trajectory. (See section 8.6).

8.4 Policy Gradient

Let us define V(θ) to be the objective function we wish to maximize over θ. Policy
gradient methods search for a local maximum in V(θ) by ascending the gradient
of the policy w.r.t parameters θ

∆θ = α∇θV(θ) (8.7)

where α is a step-size parameter and ∇θV(θ) is the policy gradient

∇θV(θ) =


∂V(θ)

∂θ1
...

∂V(θ)
∂θn

 (8.8)
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16 chapter 8. policy gradient

8.4.1 Computing the gradient

With this setup, all we have to do is compute the gradient of the objective function
V(θ), and we can optimize it! The method of finite difference from calculus
provides an approximation of the gradient:

∂V(θ)

∂θk
≈ V(θ + εuk)−V(θ)

ε
(8.9)

where uk is a unit vectorwith 1 in k-th component, 0 elsewhere. Thismethod uses n
evaluations to compute the policy gradient in n dimensions, so it is quite ineffcient,
and it usually only provides a noisy approximation of the true policy gradient.
However, it has the advantage that it works for non-differentiable policies. An
example of a successful use of this method to train the AIBO robot gait.2 2 N. Kohl and P. Stone, ‘‘Policy Gra-

dient Reinforcement Learning for
Fast Quadrupedal Locomotion,’’
in IEEE International Conference on
Robotics and Automation (ICRA),
vol. 3, 2004.

Analytic gradients. Let us set the objective function V(θ) to be the expected
rewards for an episode,

V(θ) = E(st ,at)∼πθ

[
T

∑
t=0

R(st, at)

]
(8.10)

= Eτ∼πθ
[R(τ)] (8.11)

= ∑
τ

P(τ; θ)R(τ) (8.12)

where τ is a trajectory,

τ = (s0, a0, r0, . . . , sT−1, aT−1, rT−1, sT) (8.13)

and P(τ; θ) denotes the probability over trajectories when following policy πθ ,
and R(τ) is the sum of rewards for a trajectory. Note that this objective function is
the same as the start value J1(θ) as mentioned in section 8.3.1 when the discount
γ = 1.
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8.4. policy gradient 17

If we can mathematically compute the policy gradient ∇θπθ(a | s), then we
can directly compute the gradient of this objective function with respect to θ:

∇θV(θ) = ∇θ ∑
τ

P(τ; θ)R(τ) (8.14)

= ∑
τ

∇θ P(τ; θ)R(τ) (8.15)

= ∑
τ

P(τ; θ)

P(τ; θ)
∇θ P(τ; θ)R(τ) (8.16)

= ∑
τ

P(τ; θ)R(τ)
∇θ P(τ; θ)

P(τ; θ)︸ ︷︷ ︸
likelihood

ratio

(8.17)

= ∑
τ

P(τ; θ)R(τ)∇θ log P(τ; θ) (8.18)

= Eτ∼πθ [R(τ)∇θ log P(τ; θ)] (8.19)

The expression ∇θ P(τ; θ)/P(τ; θ) in equation (8.17) is known as the likeli-
hood ratio. The tricks in equations (8.16) to (8.19) helps for two reasons. First, it
helps us get the gradient into the form Eτ∼πθ

[. . .], which allows us to approximate
the gradient by sampling trajectories τ(i):

∇θV(θ) ≈ ĝ =
1
m

m

∑
i=1

R(τ(i))∇θ log P(τ(i); θ) (8.20)

Second, computing∇θ log P(τ(i); θ) is easier than working with P(τ(i); θ) directly:

∇θ log P(τ(i); θ) = ∇θ log

 µ(s0)︸ ︷︷ ︸
initial
state

distribution

T−1

∏
t=0

πθ(at | st)︸ ︷︷ ︸
policy

P(st+1 | st, at)︸ ︷︷ ︸
dynamics model

 (8.21)

= ∇θ

[
log µ(s0) +

T−1

∑
t=0

log πθ(at | st) + log P(st+1 | st, at)

]
(8.22)

=
T−1

∑
t=0
∇θ log πθ(at | st)︸ ︷︷ ︸

no dynamics model required!

(8.23)
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18 chapter 8. policy gradient

Working with log P(τ(i); θ) instead of P(τ(i); θ) allows us to represent the
gradientwithout reference to the initial state distribution, or even the environment
dynamics model!

The expression ∇θ log πθ(at | st) is known as the score function. Putting
equation (8.20) and equation (8.23) together, we get

∇θV(θ) ≈ ĝ =
1
m

m

∑
i=1

R(τ(i))
T−1

∑
t=0
∇θ log πθ

(
a(i)t | s(i)t

)
(8.24)

which we can convert into a concrete algorithm for optimizing πθ (??). But before
that, we will mention the generalized version of this result and cover an optimiza-
tion of the above derivation that takes advantage of decomposing R(τ(i)) into a
sum of reward terms r(i)t (section 8.6).

8.5 The Policy Gradient Theorem

Theorem 8.1. For any differentiable policy πθ(a | s) and for any of the policy objective
functions V(θ) = J1, Javg-R, or 1

1−γ Javg-V, the policy gradient is

∇θV(θ) = Eπθ
[Qπθ (s, a)∇θ log πθ(a | s)] (8.25)

We will not go over the derivation of this more general theorem, but the same
concepts discussed in this lecture apply to non-episodic (continuing) environ-
ments. In our discussion thus far, the total episode rewards R(τ) have been
substituted in place of the Q values of this theorem, but in the following section
we will use the temporal structure to get our result into a form that looks more
like this theorem, where the future returns Gt (which are unbiased estimates of
Q(st, at)) appear in place of Qπθ (s, a).

8.6 Temporal Structure

Equation (8.19) above can be written

∇θV(θ) = ∇θEτ∼πθ
[R(τ)] = Eτ∼πθ

[
R(τ)

T−1

∑
t=0
∇θ log πθ(at | st)

]
(8.26)
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8.6. temporal structure 19

Notice that the rewards R(τ(i)) are treated as a single number which is a
function of an entire trajectory τ(i). We can break this down into the sum of all
the rewards encountered in the trajectory,

R(τ) =
T−1

∑
t=0

R(st, at) (8.27)

Using this knowledge, we can derive the gradient estimate for a single reward
term r′t in exactly the same way we derived equation (8.26):

∇θEπθ
[r′t] = Eπθ

[
r′t

t′

∑
t=0
∇θ log πθ(at | st)

]
(8.28)

Since ∑T−1
t′=t r(i)t′ is the return G(i)

t , we can sum this up over all time steps for a
trajectory to get

∇θV(θ) = ∇θEτ∼πθ
[R(τ)] = Eπθ

[
T−1

∑
t′=0

r′t
t′

∑
t=0
∇θ log πθ(at | st)

]
(8.29)

= Eπθ

[
T−1

∑
t=0
∇θ log πθ(at | st)

T−1

∑
t′=t

r′t

]
(8.30)

= Eπθ

[
T−1

∑
t=0

Gt∇θ log πθ(at | st)

]
(8.31)

Our final expression that we will use in the policy gradient algorithm in the
next section is:

∇θV(θ) = ∇θEτ∼πθ
[R(τ)] ≈ 1

m

m

∑
i=1

T−1

∑
t=0

G(i)
t ∇θ log πθ

(
a(i)t | s(i)t

)
(8.32)

Policy gradient example. Going from equation (8.29) to equation (8.30) may
not be obvious, so let’s go over a quick example. Say we have a trajectory that is
three time steps long. Then equation (8.29) becomes

∇θV(θ) =

Eπθ
[r0∇θ log πθ(a0 | s0)+

r1(∇θ log πθ(a0 | s0) +∇θ log πθ(a1 | s1))+

r2(∇θ log πθ(a0 | s0) +∇θ log πθ(a1 | s1) +∇θ log πθ(a2 | s2))]
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20 chapter 8. policy gradient

Regrouping the terms, we get

∇θV(θ) = Eπθ
[∇θ log πθ(a0 | s0)(r0 + r1 + r2)+

∇θ log πθ(a1 | s1)(r1 + r2)+

∇θ log πθ(a2 | s2)(r2)]

which equals equation (8.30) as expected. The main idea is that the policy’s
choice at a particular time step t only affects rewards received in later steps of
the episode, and has no effect on rewards received in previous time steps. Our
original expression in equation (8.26) did not take this into account.

8.7 REINFORCE: A Monte Carlo Policy Gradient Algorithm

We’ve done most of the work towards our first policy gradient algorithm in the
sections above. The algorithm simply samples multiple trajectories following the
policy πθ while updating θ using the estimated gradient in equation (8.32).3

3 REINFORCE leverages the likeli-
hood ratio score function and tem-
poral structure (using Gt), and
thus reduces variance and im-
proves our gradient estimate.

function REINFORCE(α)
Initialize policy parameters θ arbitrarily
for each episode {s1, a1, r2, . . . , sT−1, aT−1, rT} ∼ πθ do

for t = 1 to T − 1 do
θ ← θ + αGt∇θ log πθ(at | st)

return θ

Algorithm 8.1. REINFOCE: Monte
Carlo policy gradient algorithm.

8.8 Differentiable Policy Classes

In this section, we introduce a few classes of policies which are differentiable.

8.8.1 Discrete action space: softmax policy

In discrete action spaces, the softmax function is commonly used to parameterize
the policy:

πθ(a | s) =
exp

(
φ(s, a)>θ

)
∑a′ exp

(
φ(s, a′)>θ

) (8.33)
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The score function for the softmax policy is then:

∇θ logθ π(a | s) = ∇θ

[
φ(s, a)>θ − log ∑

a′
exp

(
φ(s, a′)>θ

)]
(8.34)

= φ(s, a)− 1
∑a′ exp

(
φ(s, a′)>θ

)∇θ ∑
a′

exp
(

φ(s, a′)>θ
)

(8.35)

= φ(s, a)− 1
∑a′ exp

(
φ(s, a′)>θ

) ∑
a′

φ(s, a′) exp
(

φ(s, a′)>θ
)

(8.36)

= φ(s, a)−∑
a′

φ(s, a′)
exp

(
φ(s, a′)>θ

)
∑a′′ exp

(
φ(s, a′′)>θ

) (8.37)

= φ(s, a)−∑
a′

φ(s, a′)πθ(a′ | s) (8.38)

= φ(s, a)−Ea′∼πθ(a′ |s)
[
φ(s, a′)

]
(8.39)

8.8.2 Continous action space: Gaussian policy

For continuous action spaces, a common choice is aGaussian policy a ∼ N (µ(s), σ2).

• The mean action is a linear combination of state features: µ(s) = φ(s)>θ

• The variance σ2 can be fixed, or also parameterized

The score function is:

∇θ log πθ(a | s) =
(a− µ(s))φ(s)

σ2 (8.40)

8.9 Variance Reduction with a Baseline

A weakness of Monte Carlo policy gradient algorithms is that the returns G(i)
t

often have high variance across multiple episodes. One way to address this is to
subtract a baseline b(s) from each G(i)

t . The baseline can be any function, as long
as it does not vary with a.

∇θV(θ) = ∇θEτ∼πθ
[R(τ)] = Eπθ

[
T−1

∑
t=0

(Gt − b(st))∇θ log πθ(at | st)

]
(8.41)
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22 chapter 8. policy gradient

First, why do we want to do this? Intuitively, we can think of (Gt − b(st)) as
an estimate of how much better we did after time step t than is expected by the
baseline b(st). So, if the baseline is approximately equal to the expected return
b(st) ≈ E[rt + rt+1 + · · ·+ rT−1], then we will be increasing the log-probability
of action at proportionally to how much better the return Gt is than expected.
Previously, we were increasing the log-probability proportionally to the mag-
nitude of Gt, so even if the policy always achieved exactly its expected returns,
we would still be applying gradient updates that could cause it to diverge. The
quantity (Gt − b(st)) is usually called the advantage, At . We can estimate the
true advantage from a sampled trajectory τ(i) with

Ât = (G(i)
t − b(st)) (8.42)

Secondly, why can we do this? It turns out that subtracting a baseline in this man-
ner does not introduce any bias into the gradient calculation.Eτ [b(st)∇θ log πθ(at |
st)] evaluates to zero, and hence has no effect on the gradient update.

Eτ∼πθ
[b(st)∇θ log πθ(at | st)]

= Es0:t ,a0:(t−1)

[
Es(t+1):T ,at:(T−1) [∇θ log πθ(at | st)b(st)]

]
(break up expectation)

= Es0:t ,a0:(t−1)

[
b(st)Es(t+1):T ,at:(T−1) [∇θ log πθ(at | st)]

]
(pull baseline term out)

= Es0:t ,a0:(t−1)

[
b(st)Eat [∇θ log πθ(at | st)]

]
(remove irrelevant variables)

= Es0:t ,a0:(t−1)

[
b(st)∑

at

πθ(at | st)
∇θπθ(at | st)

πθ(at | st)

]
(expand expectation, take derivative of log)

= Es0:t ,a0:(t−1)

[
b(st)∑

at

∇θπθ(at | st)

]
(cancel πθ)

= Es0:t ,a0:(t−1)

[
b(st)∇θ ∑

at

πθ(at | st)

]
(move gradient)

= Es0:t ,a0:(t−1) [b(st)∇θ1] (sum over πθ(· | st) = 1)

= Es0:t ,a0:(t−1) [b(st) · 0] (derivative of constant is zero)

= 0 (thus, no added bias)
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8.9.1 Vanilla policy gradient

Using the baseline as described above, we introduce the ‘‘vanilla’’ policy gradient
algorithm. Suppose that the baseline function has parameters w.

function PolicyGradient(α)
Initialize policy parameters θ and baseline values b(s) for all s (e.g., to 0)
for iteration = 1, 2, . . . do

Collect a set of m trajectories by executing the current policy πθ

for each time step t of each trajectory τ(i) do
Compute the return G(i)

t = ∑T−1
t′=1 rt′

Compute the advantage estimate Â(i)
t = G(i)

t − b(s) . b(s) is often an estimate of V(s)

Re-fit the baseline to the empirical returns by update w to minimize:

m

∑
i=1

T−1

∑
t=0
‖b(st)− G(i)

t ‖
2

Update policy parameters θ using the policy gradient estimate ĝ:

ĝ =
m

∑
i=1

T−1

∑
t=0

Â(i)
t ∇θ log πθ(a(i)t | s(i)t )

(using an optimizer like SGB (θ ← θ + αĝ) or Adam)
return θ and baseline values b(s)

Algorithm 8.2. Vanilla policy gra-
dient algorithm.One natural choice for the baseline is the state value function, b(st) = V(st).

Under this formulation, we can define the advantage function as Aπ(s, a) =

Qπ(s, a)−Vπ(s). However, since we do not know the true state values, we instead
use an estimate V̂(st; w) for some weight vector w. We can simultaneously learn
the weight vector w for the baseline (state-value) function and policy parameters
θ using the Monte Carlo trajectory samples.

Note that in the above algorithm, we usually do not compute the gradients
∑t Ât∇θ log πθ(at | st) individually. Rather, we accumulate data from a batch
into a loss function

L(θ) = ∑
t

Ât log πθ(at | st) (8.43)
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24 chapter 8. policy gradient

and then apply the gradients all at once by computing ∇θ L(θ). We can also
introduce a component into this loss to fit the baseline function:

L(θ, w) = ∑
t

(
Ât log πθ(at | st)− ‖b(st)− G(i)

t ‖
2
)

(8.44)

We can then compute the gradients of L(θ, w) w.r.t. θ and w to perform SGD
updates.

8.9.2 N-step estimators

In the above derivations, we have used the Monte Carlo estimates of the reward
in the policy gradient approximation. However, if we have access to a value
function (for example, the baseline), then we can also us TD methods for the
policy gradient update, or any intermediate blend between TD and MC methods:

Ĝ(1)
t = rt + γV(st+1)

Ĝ(2)
t = rt + γrt+1 + γ2V(st+2)

· · ·

Ĝ(inf)
t = rt + γrt+1 + γ2V(st+2) + · · ·

which we can also use to compute advantages:

Â(1)
t = rt + γV(st+1)−V(st)

Â(2)
t = rt + γrt+1 + γ2V(st+2)−V(st)

· · ·

Â(inf)
t = rt + γrt+1 + γ2V(st+2) + · · · −V(st)

Â(1)
t is a purely TD estimate, and has low variance, but high bias. Â(inf)

t is a purely
MC estimate, and has zero bias, but high variance. If we choose an intermediate
value of k for A(k)

t , we can get an intermediate amount of bias and an intermediate
amount of variance.
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8.9. variance reduction with a baseline 25

8.9.3 Common template of policy gradient algorithms

Many policy gradient algorithms follow a common template.

function PolicyGradientTemplate()
for iteration = 1, 2, . . . do

Run policy for T timesteps or N trajectories
At each timestep in each trajectory, compute target Qπ(st, at) and baseline b(st)

Compute estimate policy gradient ĝ
Update the policy using ĝ, potentially constrained to a local region

return θ and baseline values b(s)

Algorithm 8.3. Common template
of policy gradient algorithms.
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