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1. MDP Graphical Model

The graphical model of aMarkov decision process (MDP) illustrates the dependencies between states s, actions a, and rewards r
at time t. The Markov property holds if the conditional probability distribution of future states dependents only on the current
state and action, and not the previous sequence (i.e. trajectory) of states and actions.
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A trajectory τ is a sequence of states and actions up to some time T, where τ = 〈s1, a1, . . . , sT , aT〉. The probability of a
particular trajectory using a policy πθ that is parameterized by θ is denoted pθ(τ), where

pθ(s1, a1, . . . , sT , aT)︸ ︷︷ ︸
pθ(τ)

= p(s1)
T

∏
t=1

πθ(at | st)p(st+1 | st, at). (1)

Using the Markov property of an MDP, we can derive equation (1) using the chain rule. Recall that the definition of
conditional probability for two events E and F can be written as P(E, F) = P(E | F)P(F), which we call the chain rule. So the
general form of the chain rule for n events can be written as:

P(E1, E2, . . . , En) = P(E1)P(E2 | E1) · · · P(En | E1, E2, . . . , En−1) (2)

=
n

∏
i=1

P

(
Ei

∣∣∣∣ i−1⋂
k=1

Ek

)
(3)

Now recall that πθ(at | st) is the probability of taking action at from state st using policy π parameterized by θ. Now we
can derive equation (1):

pθ(τ) = pθ(s1, a1, . . . , sT , aT) (definition of trajectory)
= p(s1)πθ(a1 | s1) · · · p(sT | s1, a1, . . . , sT−1, aT−1)πθ(aT | s1, a1, . . . , sT) (chain rule)
= p(s1)πθ(a1 | s1) · · · p(sT | sT−1, aT−1)πθ(aT | sT) (Markov property)

= p(st)
T

∏
t=1

πθ(at | st)p(st+1 | st, at) (generalized for time T)
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