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(2)Derivatives and Gradients.

f ′(x) ≈

forward difference︷ ︸︸ ︷
f (x + h)− f (x)

h
≈

central difference︷ ︸︸ ︷
f (x + h/2)− f (x − h/2)

h
≈

backward difference︷ ︸︸ ︷
f (x)− f (x − h)

h

f (x) = Re( f (x + ih)) + h2 f ′′(x)
2!

− · · · , f ′(x) =
Im( f (x + ih))

h
+ O(h2) as h → 0

• Forward accumulation will auto-diff f with a single forward pass through computational
graph (see dual numbers: a + bε where ε2 = 0). Reverse accumulation requires n passes.

(3)Bracketing.

• Fibonacci search, golden section search (Fibonacci approximation), quadratic fit search, Shubert-
Piyavskii method,1 and the bisection method (a root-finding method expanded by Brent-Dekker). 1 A global optimization methodwhere

f is Lipschitz continuous.

(4)Local Descent.

• Descent direction methods, (approximate) line search (learn step size: minimize
α

f (x + αd)),
backtracking line search,2 Wolfe conditions, and trust regions (or restricted step method).

2 Start big then backtrack.

(5)First-Order Methods.

• Gradient descent, conjugate gradient,3 momentum, Nesterov momentum,4 adaptive subgradient

3 Overcomes narrow valley issues
of gradient descent. Its directions
are mutually conjugate with respect
to A. Approximations of β are
Fletcher-Reeves and Polak-Ribière.

4 Reduce overshooting at bottom.

method (or Adagrad),5 RMSProp,6 Adadelta,7 adaptive moment estimation (or Adam),8 and 5 Dulls high gradients, increases in-
fluence of infreq. updated params.
6 Extends Adagrad to avoid ef-
fects of a monotonically decreasing
learning rate.
7 Overcomes Adagrad’s monotoni-
cally decreasing learning rate by
eliminating α in favor of:

x′ = x − RMS(∆x)
ε + RMS(g)

g

8 Adapts learning rate to each pa-
rameter, biases then corrects decay
in momentum v and sq. gradient s.

hypergradient descent (augments a DescentMethod).

(6)Second-Order Methods.

• Newton’s method9 (quadratic approximation), secant method,10 and quasi-Newton methods.11

9

x′ = x − f ′(x)
f ′′(x)

10 Unlike Newton’s method, esti-
mates f ′′, only requires f ′:

f ′′(x) ≈ f ′(x)− f ′(x(k−1))

x − x(k−1)

11 Inverse Hessian H−1 approxima-
tion: DFP, BFGS, L-BFGS approxi-
mate line search.

(7)Direct Methods.

• Cyclic coordinate search, Powell’s method,12 Hooke-Jeeves, generalized pattern search, Nelder-Mead

12 Non-orthogonal directions.

simplex method, and divided rectangles (univariate and multivariate DIRECT).

(8)Stochastic Methods.

• Stochastic gradient descent, mesh adaptive direct search, simulated annealing (Metropolis criterion),
adaptive simulated annealing, cross-entropymethod,13 natural evolutionary strategies, and covariance

13 Sample, select, fit, repeat.

matrix adaptation evolutionary strategy (CMA-ES: uses a multivariate Gaussian distribution).

(9)Population Methods.

• Initial population (uniform, normal, Cauchy), genetic algorithms (undergo crossover and mu-
tation), differential evolution, particle swarm optimization, firefly algorithm, cuckoo search, hybrid
methods (local search using descent methods: Lamarchian learning and Baldwinian learning).


