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(2) Derivatives and Gradients.
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o Forward accumulation will auto-diff f with a single forward pass through computational
graph (see dual numbers: a + be where €2 = 0). Reverse accumulation requires n passes.

() Bracketing.

o Fibonacci search, golden section search (Fibonacci approximation), quadratic fit search, Shubert-

Piyavskii method," and the bisection method (a root-finding method expanded by Brent-Dekker). A global optimization method where
f is Lipschitz continuous.

(4)Local Descent.

. . . . . e . 2 Start big then backtrack.
e Descent direction methods, (approximate) line search (learn step size: minimize f(x + ad)), art big Then backdrac
o

3 Overcomes narrow valley issues
of gradient descent. Its directions
are mutually conjugate with respect

(5) Bipat to A. Approximations of B are
First-Order Methods. Fletcher-Reeves and Polak-Ribiére.

backtracking line search,* Wolfe conditions, and trust regions (or restricted step method).

o Gradient descent, conjugate gradient,3 momentum, Nesterov momentum,* adaptive subgradient  *Reduce overshooting at bottom.

method (or Adagrad),> RMSProp,® Adadelta,” adaptive moment estimation (or Adam),® and  5Dulls high gradients, increases in-

hypergradient descent (augments a DescentMethod). fluence of infreq. updated params.

®Extends Adagrad to avoid ef-

fects of a monotonically decreasing
(6) Second-Order Methods. learning rate.

7 Overcomes Adagrad’s monotoni-
e Newton’s method® (quadratic approximation), secant method,*® and quasi-Newton methods.™ cally decreasing learning rate by

eliminating « in favor of:

(7) Direct Methods. N RMS(ASa(c))g
€+ RMS(g

e Cyclic coordinate search, Powell’s method,** Hooke-Jeeves, generalized pattern search, Nelder-Mead s Adapts learning rate to each pa-
simplex method, and divided rectangles (univariate and multivariate DIRECT). rameter, biases then corrects decay

in momentum v and sq. gradient s.
9
(8) Stochastic Methods. AR )
f(x)

e Stochastic gradient descent, mesh adaptive direct search, simulated annealing (Metropolis criterion), 1 Unlike Newton’s method, esti-

adaptive simulated annealing, cross-entropy method,*3 natural evolutionary strategies, and covariance ~ mates f”, only requires f":

matrix adaptation evolutionary strategy (CMA-ES: uses a multivariate Gaussian distribution). () F(x) = f/(xkD)y
x — x(k=1)
(9 )Population Methods. " Inverse Hessian H~! approxima-

tion: DFP, BFGS, L-BFGS approxi-

e [nitial population (uniform, normal, Cauchy), genetic algorithms (undergo crossover and mu- ™ate line search.
tati di tial luti ticl timizati . ] i k h hbrid > Non-orthogonal directions.
ation), differential evolution, particle swarm optimization, firefly algorithm, cuckoo search, hybrid Sample, select, it, repeat.

methods (local search using descent methods: Lamarchian learning and Baldwinian learning).



