
robert moss engineering design optimization

Project 3: Engineering Design Optimization
Robert Moss mossr@cs.stanford.edu
Stanford University, Stanford, CA 94305 AA222/CS361

1 Question 1, Problem 1

What is the cheapest combination of ingredients and filler to produce one kg of product?

Task 1. We can formulate the optimization problem as fol-
lows. Let c = [60, 40] to represent the cost per kilogram of each
ingredient (omitting the filler which we’ll addressed later).
Let x = [x1, x2] be the design variables where x1 is the portion
of ingredient 1 and x2 is the portion of ingredient 2, both in
kilograms. Let the matrix

A =


200 100
130 70
15 35
0 7

655 788


which captures the amount of vitamins andminerals in each in-
gredient in grams per kilogram, and accounts for the ‘‘other’’
content in the ingredient (i.e. content aside from the given
vitamins and minerals to sum to 1 kg). Let b = [90, 50, 20, 2, 0]
to capture the minimum vitamin and mineral requirements,
in grams. Finally, let s be a slack variable that represents the
amount of the product in grams taken up by the filler. For-
mally, we get the following optimization problem:

minimize
x

c>x

subject to Ax ≥ b

Ax · 1 + s = 1000

x ≥ 0

s ≥ 0

The constraint Ax ≥ b ensures we meet the minimum vita-
min and mineral requirements encoded in b. The constraint
Ax · 1 + s = 1000 ensures that the sum of the grams of in-
gredients and the grams of filler equals 1000 grams (i.e. 1 kg,
where 1 is the ones-vector used for convenient summations).
Finally, the constraints x ≥ 0 and s ≥ 0 ensure that there is a
non-negative amount of the ingredients and filler, respectively.

Task 2. To solve this optimization problem,we used JuMP.jl

and wrote the following code:

using JuMP

using GLPK

using LinearAlgebra

model = Model(GLPK.Optimizer)

c = [60, 40] # cost/kg

A = [200 100;

130 70;

15 35;

0 7;

655 788] # grams/kg

b = [90, 50, 20, 2, 0] # grams

N, M = length(c), length(b)
@variable(model, x[1:N]) # ingredients

@variable(model, s) # filler/slack

@objective(model, Min, c'x)

@constraints(model, begin

A*x .≥ b
A*x⋅ones(M) + s == 1000

x .≥ 0

s ≥ 0

end)

optimize!(model)

We get the optimal solution of x ≈ [0.2091, 0.4818] kg with a
filler/slack of s ≈ 309.09 grams and the minimized value of
the cost function c>x ≈ 31.818.

Task 3. From the results in task (2), we get that the ideal
recipe is about 0.2091 kg of ingredient 1, about 0.4818 kg of
ingredient 2, and the rest is filler (about 0.3091 kg). This has
an associatedmanufacturing cost of about 31.818 with a result-
ing nutritional composition of about 90 grams of vitamin A,
60.91 grams of vitamin B, 20 grams of vitamin C, 3.373 grams
of minerals, 516.63 grams of the ‘‘other’’ contents, and 309.09
grams of filler (for a total of 1 kg of product).

robert moss engineering design optimization

2 Question 1, Problem 2

What is the cheapest combination of ingredients and filler to produce one kg of product with the given requirements?

Task 4. Similar to task (1), we can formulate the optimiza-
tion problem as follows. Let c = [60, 40, 25] to represent the
cost per kilogram of each ingredient and the one-time-additive
cost of using ingredient 2. Let x = [x1, x2, xb] be the mixed
design variables where x1 is the portion of ingredient 1 in
kg, x2 is the portion of ingredient 2 in kg, and xb is a binary
variable used to control the additive cost of 25. Let the matrix

A =


200 100 0
130 70 0
15 35 0
0 7 0

655 788 0


which captures the amount of vitamins and minerals in each
ingredient in grams per kilogram, accounting for the additive
cost (i.e. the all-zeros column) and the ‘‘other’’ content in the
ingredient. Let b = [90, 50, 20, 2, 0] to capture the minimum
vitamin and minerals requirements in grams. Let s be a slack
variable that represents the amount of the product in grams
taken up by the filler. Let the binary variable y ∈ BM where
M = |b| = 4 which is used to control the ‘‘at least 2’’ satisfac-
tory relaxation. Let y′ = y1:M−1 be the subset of the indicator
variables that exclude the ‘‘other’’ content of the ingredients.
Let u = 1 which is the upper bound on the value of x2 (for
ingredient 2). Formally, we get the optimization problem:

minimize
x

c>x

subject to Ax ≥ b � y

y′ · 1 ≥ 2

Ax · 1 + s = 1000

xb −
x2

u
≥ 0, x ≥ 0, s ≥ 0

Where � is used as the component-wise vector multiplica-
tion. The constraint Ax ≥ b� y ensures that when a particular
ingredient/mineral requirement is being met (as indicated
by y) then we want to make sure that the requirements are
actually met as encoded by b. The constraint y′ · 1 ≥ 2 en-
sures that at least 2 of the requirements are met (where 1 is the
ones-vector, used for convenient summations). The constraint
Ax · 1 + s = 1000 ensures that the sum of the grams of ingre-
dients and the grams of filler equals 1000 grams (i.e. 1 kg).
The constraint xb − x2

u ≥ 0, as taken from the hint, ensures
that when the value of x2 > 0, then xb = 1, and otherwise xb

can be either 1 or 0 (either way, it won’t matter). Finally, the
constraints x ≥ 0 and s ≥ 0 ensure that there is a non-negative
amount of the ingredients and filler, respectively.

Task 5. To solve this optimization problem, we used JuMP.jl

and wrote the following code:

model = Model(GLPK.Optimizer)

c = [60, 40, 25] # cost/kg

A = [200 100 0;

130 70 0;

15 35 0;

0 7 0;

655 788 0] # grams/kg

b = [90, 50, 20, 2, 0] # grams

N, M = length(c), length(b)
@variable(model, x[i=1:N], binary=(i == N))

@variable(model, y[1:M], Bin) # relaxation indicator

@variable(model, s) # filler/slack

y′ = y[1:end-1] # subset, excludes "other" content

u = 1 # upper bound on x₂ (ingredient 2)

@objective(model, Min, c'x)
@constraints(model, begin

A*x .≥ b .* y
y′⋅ones(M-1) ≥ 2

A*x⋅ones(M) + s == 1000

x[N] - x[2]/u .≥ 0

x .≥ 0

s ≥ 0

end)

optimize!(model)

We get the optimal solution of x = [0.45, 0.0, 0.0] kg with a
filler/slack of s = 550.0 grams, the relaxation indicator of
y = [1, 1, 0, 0], and the minimized value of the cost function
c>x = 27.0.

Task 6. The ideal recipe has 0.45 kg of ingredient 1, 0 kg
of ingredient 2, and 0.55 kg of filler. This has an associated
manufacturing cost of 27 with a resulting nutritional compo-
sition of 90 grams of vitamin A, 58.5 grams of vitamin B, 6.75
grams of vitamin C, 0 grams of minerals, 294.75 grams of the
‘‘other’’ contents, and 550.0 grams of filler (for a total of 1 kg
of product). Only the first two nutritional requirements were
satisfied (where y = [1, 1, 0, 0]), resulting in a relaxation of
the vitamin C and minerals requirements.

The interpretation of the results is that given the relaxation
of only needing to satisfy at least 2 requirements, the optimal
solution omits the use of ingredient 2. This is in part due to
the additional cost of 25 (on top of the second ingredient’s
original cost). Another factor is since only ingredient 2 has
non-zero minerals our original formulation always required
some amount of ingredient 2 to satisfy the constraints. But
now with the relaxation, the minerals constraint is no longer
required to be met resulting in ingredient 2 not being in the
optimal product.

robert moss engineering design optimization

3 Question 2, Problem 1

Use expression optimization to solve for the two expressions x(t) and y(t) that describe the motion of stars in a trinary star system.

Task 1. We use an objective function that is the sum of the
squared residual between the true function x(t) and the ap-
proximate function x̂(t). A regularization term andmultiplica-
tive penalty term are included to provide stability in the final
expression. For regularization, we want to limit the number
of operations to encourage simpler expressions. The multi-
plicative penalty term ρ uses the approximate derivative to
penalize expressions with opposite slope. Let xt represent a
shorthand for x(t). Formally, we get the objective function:[

tmax

∑
t=t0

(xt − x̂t)
2 ρ1[sign(∇xt) 6=sign(∇x̂t)]

]
+

λ

2
|x̂|2

We use a regularization constant of λ = 0.05 and we let |x̂| be
the number of operations in an expression x̂. We use 1 as the
indicator function, which applies the penalty ρ = 10 when
the derivatives are opposite signs for ∇xt and ∇x̂t at time t.

Task 2. We use a grammar that incorporates mathematical
operations of +,−,×, / with trigonometric functions sin and
cos, the exponentiation function exp, the square root, the time

input variable t, the constant π, and digits 1 − 9. Formally, we
get the grammar:

R → R + R | R − R | R × R | R / R

R → sin(R) | cos(R) | exp(R) | sqrt(R)

R → t | π

R → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Task 3. We could use population methods due to the na-
ture of expression optimization. Particularly, we used genetic
programming to evolute a population of expressions. Genetic
programming is well suited for expression optimization be-
cause we sample from a discrete distribution of expressions
generated from the grammar and treat each expression as an
individual in the population. We set identical hyperparame-
ters when optimizing for x̂ and ŷ. The hyperparameters are
shown in the code below.

Task 4. We used the ExprOptimization.jl package and
wrote the following code:

using ExprOptimization, LinearAlgebra, Random, DelimitedFiles

Random.seed!(0)

import Base.length

length(sym::Symbol) = 1 # counting operations

length(ex::Expr) = sum(length(a) for a in ex.args)

R(expr, λ=0.05) = λ/2*length(expr)^2 # regularization

I(b) = b ? 1 : 0 # indicator function

penalty(∇v, ∇v′, ρ=10) = ρ^I(sign(∇v) ≠ sign(∇v′))

v′(t, S, ex) = Core.eval(merge(S, Dict(:t=>t)), ex)

∇(V) = vcat(0, diff(V)) # derivative

const traj = readdlm("traj.txt", ',')

const T, X, Y = traj[:,1], traj[:,2], traj[:,3]

const grammar = @grammar begin

ℝ = (ℝ + ℝ) | (ℝ - ℝ) | (ℝ * ℝ) | (ℝ / ℝ)

ℝ = sin(ℝ) | cos(ℝ) | exp(ℝ) | sqrt(ℝ)

ℝ = t | π

ℝ = |(1:9)

end

const S = SymbolTable(grammar)

function objective(V, ∇V, tree, grammar)

ex = get_executable(tree, grammar)

V′ = try [v′(t, S, ex) for t in T] catch; return Inf end

∇V′ = ∇(V′)

return sum((vₜ - vₜ′)^2 * penalty(∇vₜ, ∇vₜ′) for (vₜ, vₜ′, ∇vₜ, ∇vₜ′) in zip(V, V′, ∇V, ∇V′)) + R(ex)

end

optimize(GeneticProgram(3000, 100, 6, 0.3, 0.3, 0.4), grammar, :ℝ, (t,g)->objective(X,∇(X),t,g))
optimize(GeneticProgram(3000, 100, 6, 0.3, 0.3, 0.4), grammar, :ℝ, (t,g)->objective(Y,∇(Y),t,g))

robert moss engineering design optimization

Task 5 (a). Below, we plot the ground truth data x(t) com-
pared to the approximated expression x̂(t).

0 2 4 6
−2

−1

0

1

2

t

x
M
eg

a
km

Trinary system: x and x̂

x(t)
x̂(t)

Next, we plot the ground truth data y(t) compared to the
approximated expression ŷ(t).

0 2 4 6
−2

−1

0

1

2

t

y
M
eg

a
km

Trinary system: y and ŷ

y(t)
ŷ(t)

Finally, we plot the ground truth data (x(t), y(t)) compared
to the approximated expression (x̂(t), ŷ(t)).

−1 −0.5 0 0.5 1

−0.5

0

0.5

x Mega km

y
M
eg

a
km

Trinary system: x-y plane

x(t), y(t)
x̂(t), ŷ(t)

Task 5 (b). To show that our x̂(t) is quantitatively better
than simply predicting the mean of the x(t) trajectory, no-
tice that we can use our objective function to calculate the
loss if we replace x̂(t) with the mean x̄(t) ≈ −0.0267 instead.
If we use x̄(t) we get a loss of about 751.41 compared to a
loss of about 1.69 if we use our approximated x̂(t). If we use
ȳ(t) ≈ 8 × 10−6 we get a loss of about 115.59 compared to a
loss of about 8.04 if we use our approximated ŷ(t).

Task 5 (c). Running the code finds the best fit expressions:

x(t) = cos(t - sqrt(7))

y(t) = sin(t + (t + 1)) / (sin(t) + π)

These correspond to the approximate closed form equations
for x(t) and y(t):

x̂(t) = cos(t −
√

7)

ŷ(t) =
sin(t + (t + 1))

sin(t) + π
=

sin(2t + 1)
sin(t) + π

(simplified)

The grammar trees for x̂ and ŷ are, respectively:

cos

-

t sqrt

7

/

sin

+

t +

t 1

+

sin

t

π

Task 5 (d). Below, we plot the objective function in log-scale
as a function of the number of iterations.

0 500 1,000 1,500 2,000
100

101

102

103

iteration

ob
je
ct
iv
e
fu
nc

tio
n

Objective function

x̂(t)
ŷ(t)

Task 6. The expressions x̂(t) = sin((7 − (8 + 3) ∗ t)/
√

5
and ŷ(t) = sin(t)/ exp(3) were generated for the following
butterfly orbit:

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.2

0

0.2

x Mega km

y
M
eg

a
km

Butterfly orbit: x-y plane

x(t), y(t)
x̂(t), ŷ(t)

robert moss engineering design optimization

4 Rhyme

You may use my name. What type of poem is optimal?

Optimization Haiku.

minimize, choose x.
subject to constraints, complex.
optimality, next.

	Question 1, Problem 1
	Question 1, Problem 2
	Question 2, Problem 1
	Rhyme

