Review: Constrained Optimization and Surrogate Models

Robert Moss

Stanford University, Stanford, CA 94305

MOSSR@cs.stanford.edu

AA222/CS361

General optimization problem:

Equality form:

(10) Constraints. Equality constraints $h(\mathbf{x}) = 0$, inequality constraints $g(\mathbf{x}) \leq 0$, transformations to remove constraints, Lagrange multipliers, KKT conditions, duality, primal form, dual form, min-max inequality, duality gap, penalty methods, augmented Lagrange method, and interior point methods.

(11) Linear Constrained Optimization. Linear program, general form, standard form, half-space, equality form, slack variables, simplex algorithm, and dual certificates.⁸

(12) Multiobjective Optimization. Pareto optimality, dominance, criterion space Y, Pareto frontier, weakly Pareto-optimal, utopia point, Pareto front generation, constraint method, lexicographic method, weighted sum method, goal programming, weighted exponential sum, weighted min-max method, exponential weighted criterion, multiobjective population methods, subpopulations, vector evaluated genetic algorithm, nondomination ranking, Pareto filter, niche techniques, preference elicitation, paired query selection, expert responses, prime analytic center, polyhedral method, design selection, decision quality improvement, minimax decision, and minimax regret.

(13) Sampling Plans. Space-filling, full factorial, random sampling, uniform projection plan, Latinhypercube sampling, stratified sampling, space-filling metrics, discrepancy, pairwise distances, Morris-Mitchel criterion, space-filling subsets, greedy local search, exchange algorithm, quasi-random sequences, Monte Carlo integration, quasi-Monte Carlo methods, additive recurrence, Halton sequence, Sobol sequence, and Sobol sequence.

 $^{(14)}$ Surrogate Models. Regression, linear model, linear regression, design matrix X, pseudoinverse, 14 basis functions, polynomial basis functions, sinusoidal basis functions, radial basis functions, regularization term, L_2 regularization, generalization error, training error, mean squared error, holdout method, random sampling, k-fold cross validation, leave-one-out cross-validation, complete cross-validation, bootstrap method, 15 leave-one-out bootstrap estimate, and 0.632 bootstrap estimate.

⁽¹⁵⁾**Probabilistic Surrogate Models.** Gaussian process, analytical conditional and marginal distributions, mean function $m(\mathbf{x})$, covariance function or kernel $k(\mathbf{x}, \mathbf{x}')$, squared exponential kernel, characteristic length-scale ℓ , Maérn kernel, posterior distribution, predicted mean $\hat{\mu}$, ¹⁶ predicted variance $\hat{\nu}$, ¹⁷ standard deviation, gradient measurements, noisy measurements, and maximum likelihood estimate.

(16) Surrogate Optimization. Prediction-based exploration, error-based exploration, ¹⁸ lower confidence bound exploration, ¹⁹ probability of improvement exploration, ²⁰ expected improvement exploration, ²¹ and safe optimization.

(17) Optimization under Uncertainty. Irreducible uncertainty vs. epistemic uncertainty, set-based optimization, minimax, information-gap decision theory, probabilistic uncertainty, expected value, variance, sensitive vs. robust design points, statistical feasibility, value at risk (VaR), and conditional value at risk (CVaR).

KKT conditions:

- Feasibility
- Dual feasibility
- Complementary slackness
- Stationarity
- $^{1}\mathcal{L}(\mathbf{x},\lambda) = f(\mathbf{x}) \lambda h(\mathbf{x})$
- $^{^{2}}\mathop{\text{minimize}}_{x}\mathop{\text{maximize}}_{\mu\geq0,\lambda}\mathcal{L}(x,\mu,\lambda)$
- ³ maximize minimize $\mathcal{L}(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\lambda})$
- ⁴ $p_{\text{count}}(\mathbf{x})$, $p_{\text{quadratic}}(\mathbf{x})$, $p_{\text{mixed}}(\mathbf{x})$
- 5 $p_{\text{Lagrange}}(\mathbf{x})$
- ⁶ $p_{\text{inv-barrier}}(\mathbf{x})$, $p_{\text{log-barrier}}(\mathbf{x})$
- ⁷ Greedy heuristic, Dantzig's rule, Bland's rule.
- ⁸ Verifies optimality.
- $^{9}y_{i}^{\text{utopia}} = \underset{x \in \mathcal{X}}{\text{minimize}} f_{i}(\mathbf{x})$
- minimize $\|\mathbf{f}(\mathbf{x}) \mathbf{y}^{\text{goal}}\|_p$
- ¹¹ Also called weighted Tchebycheff method.
- ¹² Fitness sharing, equivalence class sharing.

¹³ Also called *low-discrepancy sequences*.

¹⁴ Moore-Penrose pseudoinverse X⁺

¹⁵ Bootstrap method:

$$\begin{split} \epsilon_{\text{boot}} &= \frac{1}{b} \sum_{i=1}^{b} \epsilon_{\text{test}}^{(i)} \\ &= \frac{1}{m} \sum_{i=1}^{m} \frac{1}{b} \sum_{i=1}^{b} \left(y^{(j)} - \hat{f}^{(i)}(\mathbf{x}^{(j)}) \right)^2 \end{split}$$

$$\hat{\mu}(\mathbf{x}) = m(\mathbf{x}) + \mathbf{\theta}^{\top} \mathbf{K}(X, \mathbf{x})$$

¹⁷
$$\hat{v}(\mathbf{x}) = \mathbf{K}(\mathbf{x}, \mathbf{x}) - \mathbf{K}(\mathbf{x}, X)\mathbf{K}(X, X)^{-1}\mathbf{K}(X, \mathbf{x})$$

$$x^{18} x^{(m+1)} = \arg \max_{x \in \mathcal{X}} \hat{\sigma}(\mathbf{x})$$

¹⁹
$$LB(\mathbf{x}) = \hat{\mu}(\mathbf{x}) - \alpha \hat{\sigma}(\mathbf{x})$$

²⁰ Probability of improvement:

$$\begin{split} P(y < y_{\min}) &= \int_{-\infty}^{y_{\min}} \mathcal{N}(y \mid \hat{\mu}, \hat{\sigma}) dy \\ &= \Phi\left(\frac{y_{\min} - \hat{\mu}}{\hat{\sigma}}\right) \end{split}$$

²¹ Expected improvement:

$$\begin{split} \mathbb{E}[I(y)] &= \hat{\sigma} \int_{-\infty}^{y'_{\min}} (y'_{\min} - z) \, \mathcal{N}(z \mid 0, 1) dz \\ &= (y_{\min} - \hat{\mu}) P(y \le y_{\min}) \\ &+ \hat{\sigma} \, \mathcal{N}(y_{\min} \mid \hat{\mu}, \hat{\sigma}^2) \end{split}$$