
Implementation: Learning Policies with External Memory
Robert Moss mossr@stanford.edu
Stanford University, Stanford, CA 94305 AA229/CS239

1 Introduction

This work introduces the idea of using stigmergy1 when learning online policies in partially 1 Stigmergy: ‘‘The process of an in-
sect’s activity acting as a stimulus
to further activity’’, i.e. indirect co-
ordination through environmental
changes.

observable domains. Their idea was to incorporate setting and clearing external memory
bits into the action-space to learn memoryless online policies. Thus, continuing to learn a
memoryless mapping from observations or states to actions in otherwise highly non-Markovian
domains. Otherwork can performpoorly in partially observable domains due to a strongMarkov
assumption and finding an optimal memoryless policy has been proven to be NP-Hard2. 2 M.L. Littman, ‘‘Markov Games as

a Framework for Multi-Agent Re-
inforcement Learning,’’ in Proceed-
ings of the Eleventh International Con-
ference on International Conference on
Machine Learning, 1994.

2 Approach

The authors derive a simplification to the Value and Policy Search3 algorithm (VAPS). The 3 L. Baird and A. Moore, ‘‘Gradi-
ent Descent for General Reinforce-
ment Learning,’’ in Proceedings of
the 1998 Conference on Advances in
Neural Information Processing Sys-
tems II, 1999.

simplification focuses solely on policy search, thus bypassing the complications that arise in
the online case when using the error gradient for value search. The main complication being
the observation and action quantities needing to be sampled twice to avoid bias in gradient
estimation. Yet the onlyway to get a newobservation is to perform the action—which is unrealistic
online. To avoid this, the authors purpose a simplification called VAPS(1).

The instantaneous error measurement associated with policy search is given by e(zt) =

b − γtrt, where zt is a state, action, and reward sequence at time t, the discount factor is γ, and
rt is the immediate reward at time t from the sequence. The authors set b = 0 for all of their
experiments.

e(z::Sequence; b=0, γ=0.9) = b - γ^z.t * z.r

50 100

0.55

0.6

Trial

α

Figure 1. The learning rate decay
is defined by α = α0 + 1/(10N),
where N is the trial number and
α0 = 0.5 for these experiments.

The policy search error function e is used to update the Q-values during trial runs. Given a
learning rate α and an exploration trace Φs,a,t associated with the state-action pair (s, a) at time
t, the simplified Q-value update is given by

Q(s, a) = Q(s, a)− αe(zt)Φs,a,t. (1)

Notice that since the authors set b = 0 in the error measurement function e, the Q-value update
may be further simplified to Q(s, a) + αγtrtΦs,a,t (however, the Q-value updates were left as
expressed in equation 1 for general error functions e). The learning rate α is set by a parameter
α0 and adds a decaying factor based on the trial number N (see figure 1).

function update_q!(Q::Values, z::Sequence, N::Trial)

(s::State, a::Action, t::Time) = (z.s, z.a, z.t)

visit!(s, a, t)

Q[s,a] = Q[s,a] - α(N)*e(z)*exploration_trace(Q, s, a, t, N)

end

Algorithm 2.1. Q-value updates
based on the exploration traces
Φs,a,t given a sequence z and a trial
number N.

implementation: learning policies with external memory 2

Similar to the Sarsa(λ) algorithm, VAPS uses eligibility traces (or exploration traces as
they’re called in this paper). The exploration traces are used to keep track of the number of
times that the agent explored a state-action pair, and then used to back-propagate the Q-values
along the chain of state-action pairs that led to that reward. For some state s and action a, the
exploration trace at time t is given by

50 100

0.6

0.8

1

Trial

δc

Figure 2. The temperature parame-
ter c was decayed from cmax down
to cmin by an incremental value of
δc = (cmin/cmax)

1/(N−1), where N
is the trial number.

Φs,a,t =
1
c
[
Nt

s,a − Nt
s P(at = a | st = s)

]
(2)

=
1
c
[
Nt

s,a − E
[
Nt

s,a
]]

, (3)

where c is some temperature parameter (see figure 2), the counter Nt
s,a holds the number of

times that action a has been executed in state s at time t, and the counter Nt
s holds the number

of times that state s has been visited at time t.

function exploration_trace(Q::Values, s::State, a::Action, t::Time, N::Trial)

c::Temp = max(cmax - δc(N), cmin)

return 1/c * (Nₛₐₜ[s,a,t] - Nₛₜ[s,t]*boltzmann_distribution(Q, s, a, c))

end

Algorithm 2.2. The exploration
trace Φs,a,t assigns credit to state-
action pairs proportional to the de-
viation from expected behavior.

For probabilistic action selection, the Boltzmann distribution is used:

P(at = a | st = s) =
eQ(s,a)/c

∑a′ eQ(s,a′)/c
. (4)

function boltzmann_distribution(Q::Values, s::State, a::Action, c::Temp)

return exp(Q[s,a]/c) / sum(a′->exp(Q[s,a′]/c), actions)

end

Algorithm 2.3. The Boltzmann dis-
tribution will randomly select ac-
tions as a function of their Q-value.

The combination of the state counter Nt
s weighted by the action selection probability from

the Boltzmann distribution can be expressed as the expected value of the state-action counter
Nt

s,a given by E
[
Nt

s,a
]
(as seen in equation 3).

3 Discussion

The clarity in the mathematics and simplification of the original VAPS algorithm made the
implementation relatively easy. Luckily, the authors were open about the hyperparameters they
used. Namely, α0, λ, cmax, cmin, and b. Although they omitted the value for the discount factor
γ, in this test implementation we set it to γ = 0.9. The current limitations we see are in scaling
VAPS(1) to large state-spaces. Due to the counters used in the exploration trace, dimensionality
constraints may be reached based on the amount of state and action-space exploration by the
agent.

References

1. L. Baird and A. Moore, ‘‘Gradient Descent for General Reinforcement Learning,’’ in Proceedings of the
1998 Conference on Advances in Neural Information Processing Systems II, 1999.

2. M. L. Littman, ‘‘Markov Games as a Framework for Multi-Agent Reinforcement Learning,’’ in Pro-
ceedings of the Eleventh International Conference on International Conference on Machine Learning, 1994.

implementation: learning policies with external memory 3

A Appendix: Auxiliary Code

This section highlights Julia code otherwise unnecessary for the main body of the text. Namely,
helper functions and definitions of custom data types and aliases.

using DataStructures # for DefaultDict

Data type aliases

const State = Observation = Action = Trial = Int64

const Reward = Time = Temp = Float64

const Actions = Vector{Action}

const Values = DefaultDict{Tuple{State, Action}, Reward}

const Counterₛₜ = DefaultDict{Tuple{State, Time}, Int64}

const Counterₛₐₜ = DefaultDict{Tuple{State, Action, Time}, Int64}

actions = Actions([1,2]) # List of actions

memory = BitVector([0]) # One-bit memory setting

push!(actions, 0) # Append bit-setting action

Experience sequence

mutable struct Sequence

s::State

a::Action

r::Reward

t::Time

Sequence(s,a,t) = new(s, a, R(s,a), t)

end

const cmax = 1.0 # Maximum temperature

const cmin = 0.2 # Minimum temperature

Q = Values(0) # Q-value look-up table

Nₛₐₜ = Counterₛₐₜ(0) # Counter for (s,a,t)

Nₛₜ = Counterₛₜ(0) # Counter for (s,t)

α(N::Trial; α0=0.5) = α0 + 1/(10N) # Learning rate with decay

δc(N::Trial) = (cmin/cmax)^(1/(N-1)) # Temperature decay

R(s::State, a::Action) = s == State(9) ? 1 : 0 # Reward function

Increment the visit counters

function visit!(s::State, a::Action, t::Time)

Nₛₐₜ[s,a,t] += 1

Nₛₜ[s,t] += 1

end

	Introduction
	Approach
	Discussion
	Appendix: Auxiliary Code

